Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110
= ( 1/5 - 1/6 ) + ( 1/6 - 1/7 ) + ... + ( 1/10 - 1/11 )
= 1/5 - 1/11 = 6/55
( Mình ko chắc chắn là đúng đâu nhé )
T = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132
T = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
T = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
T = 1/4 - 1/12 (Cứ hai thằng cạnh nhau cộng lại bằng 0, chỉ còn thằng đầu và thằng cuối)
T = (3 - 1)/12
T = 2/12
T = 1/6
Đặt \(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{5}-\frac{1}{11}=\frac{11-5}{55}=\frac{6}{55}\)
Ủng hộ mk nha!!!
T = 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110
T = 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11
T = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11
T = 1/5 - 1/11 (Cứ hai thằng cạnh nhau cộng lại bằng 0, chỉ còn thằng đầu và thằng cuối)
T = (11-5)/55
T = 14/55
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}\)
\(=\frac{7}{60}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{12}{60}-\frac{5}{60}\)
\(A=\frac{7}{60}\)
Chúc bạn học tốt
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{12}{60}-\frac{5}{60}=\frac{7}{60}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(\Rightarrow A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
- Mẫu số của số hạng thứ 2 là 6 = 2x3
- Mẫu số của số hạng thứ 3 là 12 = 3x4
.......................
=> Mẫu số của số hạng thứ 6 bằng: 6x7=42
Dãy số 10 số hạng đó là: 1/2; 1/6, 1/12; 1/20; 1/30; 1/42; 1/56; 1/72; 1/90; 1/110.
* Tổng của 10 số hạng:
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/110 =
= 1/(1x2) + 1/(2x3) + 1/(3x4) + ... +1/(10x11)
= (2-1)/(1x2) + (3-2)/(2x3) + (4-3)/3x4) + ... + (11-10)/(10x11)
=1/1 - 1/2 + 1/2-1/3 + 1/3-1/4 +...+ 1/10-1/11
= 1/1-1/11 = 10/11
Vậy tổng của 10 số hạng trên là 10/11.
\(A=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}\)
\(=\frac{7}{60}\)
Ta có: A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
= 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/9 - 1/9 + 1/10 - 1/10 + 1/11 - 1/11 +1/12
= 1/5 - 1/12
= 7/60
Các Admin ơi hiện nay có một bạn tên là Quản lý Online Math nhưng đây không phải là quản lí mà là Nam Cao Nguyễn bạn ấy thương xuyên bảo chúng mình đặt bảo mật rôi bây giờ cậu ấy lấy nick của Nguyễn Thị Hiện Nhân,Phan Cả Phát, Hoàng Tử Giải Ngân Hà
Gọi biểu thức đó là A
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{5}-\frac{1}{11}=\frac{11-5}{55}=\frac{6}{55}\)