Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 3^8=(3^4)^2=81^2 nên 81^2-81^2=0
Mà số nào nhân 0 cũng =0nên phép tính trên =0
nhớ h ,nếu không lần sau khỏi trả lời !
Ta có : A = 1 + 2 + 3 + ... + 2008
\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\)
\(A=\frac{2009.2008}{2}\)
\(A=2017036\)
Ta có: B = 1 + 2 + 3 + ... + 1010
\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\)
\(B=\frac{1011.1010}{2}\)
\(B=510555\)
\(A=1+2+3+4+5+...+2008\)
\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)
\(=2009.1004=2017036\)
\(B=1+2+3+4+...+1010\)
\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)
\(=1011.505=510555\)
\(C=2+5+8+11+...+302\)
\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)
\(=15352\)
\(D=3+3^2+3^3+3^4+...+3^{2019}\)
\(3D=3^2+3^3+3^4+...+3^{2020}\)
\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)
\(2D=3^{2020}-3\)
\(\Rightarrow D=\frac{3^{2020}-3}{2}\)
\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)
\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)
\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)
\(3E=4^{101}-4^{10}\)
\(E=\frac{4^{101}-4^{10}}{3}\)
a,113-3+20
=1328+20
=1348
b,300+7781+1425
=9506
c,7+36-40
=43-40=3
a,
115 : 112 - 33 : ( 11 + 23 ) + 22 x 30 x 5
= 11( 5 - 2 ) - 27 : ( 1 + 8 ) + 4 x 1 x 5
= 113 - 27 : 9 + 4 x 5
= 1331 - 3 + 20
= 1328 + 20
= 1348
b,
12 x 25 + 31 x 251 + 57x 25
= 12 x 25 + 57 x 25 + 31 x 251
= ( 12 + 57 ) x 25 + 31 x 251
= 69 x 25 + 31 x 251
= 1725 + 7781
= 9506
c,
15 - 23 + 4 x 32 - 5 x 8
= 15 - 8 + 4 x 9 - 40
= 15 - 8 + 36 - 40
= 7 + 36 - 40
= 43 - 40
= 3
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}+\frac{1}{2^9}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^7}+\frac{1}{2^8}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(A=1-\frac{1}{2^9}\)
Vậy \(A=1-\frac{1}{2^9}\)