Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
A=1/3+1/9+1/27+1/81+......+1/95049
Ax3=3x(1/3+1/9+1/27+1/81+.........+1/95049)
Ax3=1+1/3+1/9+1/27+1/81+..........+1/19683
Ax3-A=1+1/3+1/9+1/27+1/81+............+1/19683
- (1+1/3+1/9+1/27+1/81+........+1/59049)
=1-1/59049
2xA=59048/59049
A=59048/59049:2
A=29524/59049
a, 1+1/3+1/9+1/27+1/81
=81/81+27/81+9/81+3/81+1/81
=81+27+9+3+1/81
=121/81
3M=1+1/3+1/9+...+1/2187
2M=3M-M
2M=1-1/6561
2M=6560/6561
M=3280/6561
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{3}{9}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{4}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{12}{27}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{13}{27}+\frac{1}{81}+\frac{1}{243}=\frac{39}{81}+\frac{1}{81}+\frac{1}{243}=\frac{40}{81}+\frac{1}{243}\)
\(=\frac{120}{243}+\frac{1}{243}=\frac{121}{243}\)
Câu trả lời hay nhất: Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x ﴾1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729﴿
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 ‐ A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 ‐ ﴾1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729﴿
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 ‐ 1/3 ‐ 1/9 ‐ 1/27 ‐ 1/81 ‐ 1/243 ‐ 1/729
= 1 ‐ 1/729
A x 2 = 728/729
A = 364/729
NHỚ TK MK NHA
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
- ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683 - ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
=1+ 243/729+ 81/729 + 27/729 + 9/729 + 3/729
=1093/729
1 + 1/3 +1/9 +1/27 +1/81
= 1 + 1 + 0,3 + 1 + 0,9 + 1 +0,27 + 1 +0,81
= 1 + 1 + 0,3 + 1 + 0,3 x 3 + 1 + 0,3 x 0,9 + 1 + 0,3 x 0,27
= 1 x 5 + 0,3 x 4 + 0,9 x 2 + 0,27 x 2
= 5 + 1,2 + 1,8 + 0,54
= 5 + ( 1,2 + 1,8 ) + 0,54
= 5 + 3 + 0,54
= 8 +0,54
= 8,54
ai t mình mình t lại
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)
\(3A-A=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)\)
\(2A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{27}-\frac{1}{27}\right)-\frac{1}{81}\)
\(2A=3-\frac{1}{81}=\frac{243-1}{81}=\frac{242}{81}\)
\(A=\frac{242}{81}:2=\frac{242}{81.2}=\frac{121}{81}=1\frac{40}{81}\)
tích mình đi, mình tích lại cho