Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng nghịch đảo có dạng: \(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)\(+\dfrac{1}{90}+\dfrac{1}{110}\) \(=\dfrac{1}{5.6}\)\(+\dfrac{1}{6.7}+...+\dfrac{1}{10.11}\)\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{10}-\dfrac{1}{11}\)\(=\dfrac{1}{5}-\dfrac{1}{11}=\dfrac{6}{55}\)
tổng nghịch đảo có dạng: \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{5}-\frac{1}{11}=\frac{6}{55}\)
Gọi 2 phân số đó là a/b và c/d
ta có: a/b+c/d=5.(a/b.c/d)
<=>ad+bc/bd=5.(ac/bd)
<=>ad+bc=5ac
Tổng nghich đảo của 2 phân sô đó là:
b/a+d/c=bc+ad/ac=5ac/ac=5
Ta có: 1a+1b+1c=1
Không mất tính tổng quát giả sử a≥b≥c.
Nếu c≥4→1a+1b+1c≤34<1.
Nên: c=1,2,3. Thử từng giá trị, tiếp tục dùng phương pháp như trên tìm được a,b.
Bài này là 1 bài rất cơ bản về phương pháp xuống thang (sắp xếp thứ tự), bạn có thể tìm thấy nhiều tài liệu (các sách viết về phương trình nghiệm nguyên đều có bài tương tự thế này).
Các số nghịch đảo:
\(2\rightarrow\frac{1}{2};6\rightarrow\frac{1}{6};12\rightarrow\frac{1}{12};...;90\rightarrow\frac{1}{90}\)
Gọi A là tổng các số nghịch đảo
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\\ =\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\\ =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\\ =1-\frac{1}{10}=\frac{9}{10}\)
tổng nghịch đảo của 30,42,56,72,90 là:
30+42+56+72+90=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)=\(\dfrac{1}{10}\)
kết quả mình chỉ viết gọn lại thôi nha.
Cảm ơn bạn iu ~