Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bài toán 1:Cho A =1.2+2.3+3.4+…+97.98+98.99+99.100. Tính giá trị của A
Lời giải 1:Theo đề bài ta có:
A.3=(1.2+2.3+3.4+…+97.98+98.99+99.100).3 =1.2(3-0)+2.3(4-1)+3.4(5-2)+ …+98.99(100-97)+99.100(101-97) =1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6-…-97.98.99+98.99.100-98.99.100-99.100.101=99.100.101.
Vậy A = 333300
Bây giờ ta tạm thời quên đi đáp số 333300 mà chỉ chú ý tới tích cuối cùng 99.100.101 trong đó 99.100 là số hạng cuối cùng của A và 101là số tự nhiên kề sau của 100 , tạo thành tích ba số tự nhiên liên tiếp. Ta dễ dàng nghĩ tới kết quả sau:
1.2+2.3+3.4+4.5+5.6 +…+n(n+1)=
Các bạn có thể tự kiểm nghiệm kết quả này bằng cách giải tuơng tự như trên.
Bây giờ ta tìm lời giải khác cho bài toán .
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+... 99.100.101-98.99.100
3S= 99.100.101
S= 99.100.101/3
S=333300
Ai t ick tui tui t ick lại
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3S = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
A=1.2+2.3+3.4+...+99.100
=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.3+2.3(4-1)+3.4(5-2)+....+99.100(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101=999900
=>A=333300
vậy A=333300
l-i-k-e cho mình nha
A=1.2+ 2.3+.......+99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> A = (99.100.101):3
A = 333300
Vậy A=333300
gọi tổng là S ta có
3S=1.2.3-0.1.2+2.3.4-1.2.3+....+99.100.101-98.99.100
=>3s=99.100.101
=>S=99.100.101:3=333300