Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=\frac{43^2-11^2}{\left(36,5\right)^2-\left(27,5\right)^2}\)
\(=\frac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}\)
\(=\frac{32.54}{9.64}\)
\(=\frac{6}{2}=3\)
Bạn viết sai đề bài rồi
\(S=\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83-97.83\)
\(=\left(97-83\right)^2=14^2=196\)
Trả lời:
\(R=\frac{43^2-11^2}{36,5^2-27,5^2}\)
\(R=\frac{\left(43-11\right).\left(43+11\right)}{\left(36,5-27,5\right).\left(36,5+27,5\right)}\)
\(R=\frac{32.54}{9.64}\)
\(R=3\)
Đề bài sai bạn nhé
\(S=\frac{97^3+83^3}{180}-97.83\)
\(S=\frac{\left(97+83\right).\left(97^2-97.23+83^2\right)}{180}-97.83\)
\(S=97^2-97.83+83^2-97.83\)
\(S=97^2-2.97.83+83^2\)
\(S=\left(97-83\right)^2\)
\(S=14^2\)
\(S=196\)
\(\frac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}=\frac{32.54}{9.64}\)
\(=3\)
dùng hằng đẳng thức thứ 3 ta có
(43-11)(43+11) và (36,5-27,5)(36,5+27,5)
Nên =1728 : 576=3
\(A=\dfrac{43^2-11^2}{\left(36,5\right)^2-\left(27,5\right)^2}\)
\(=\dfrac{\left(43-11\right)\left(43+11\right)}{\left(36,5-27,5\right)\left(36,5+27,5\right)}\)
\(=\dfrac{32.54}{9.64}=\dfrac{6}{2}=3\)
1
a,
=(202+54).(202-54)+256.352
=37888+256.352
=37888+90112
=128000
b,
=621-769.373-21904
=621-286837-21904
=-308120
c,
42^2-10^2/(36,5)^2-(27,5)^2
=(42-10).(42+10)/(36,5-27,5).(27,5+36,5)
=1664/576=2(8)
1. Tính nhanh :
a) \(202^2-54^2+256.352\)
\(=\left(202-54\right).\left(202+54\right)+256.352\)
\(=148.256+256.352\)
\(=256.\left(148+252\right)=256.400=102400\)
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
\(R=\frac{43^2-11^2}{36,5^2-27,5^2}\)
\(R=\frac{\left(43-11\right)\left(43+11\right)}{\left(36,5+27,5\right)\left(36,5-27,5\right)}\)
\(R=\frac{32.54}{64.9}\)
\(R=3\)