K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

\(M=\dfrac{1+2^2+2^3+...+2^{2012}}{2^{2014}-2}\)

\(=\dfrac{\left(1+2+2^2+2^3+...+2^{2012}\right)-2}{2^{2014}-2}\)

Gọi (1 + 2 + 22 + ... + 22012) - 2 là D

D = (1 + 2 + 22 + ... + 22012) - 2

2D = (2 + 22 + 23 + ... + 22013) - 4

D = (2 + 22 + 23 + ... + 22013) - 4 - (1 + 2 + 22 + ... + 22012) - 2

D = 22013 - 4 - 1 + 2

D = 22013 - 3

M = \(\dfrac{2^{2013}-3}{2^{2014}-2}\)

Tới đây được chưa?

11 tháng 2 2022

Ai trả lời đi please

30 tháng 8 2023

A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)

= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)

= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B

\(\Rightarrow\) \(\dfrac{A}{B}\)=2015

21 tháng 4 2019

Đặt A = 1 + 2 + 22 + 23+ ...+ 22012

      2A = 2 + 22 + 23 + 24 +....+22013

   Lấy 2A - A = 2 + 22 +23 + 24 +....+22013 - 1-2-22- 23 - ... - 22012

                 A = 22013 - 1

Khi đó : M = A / 22014 -2 

                 = 22013 - 1 / 2.( 22013  - 1 )

                 = 1/2

Vậy M= 1/2

                

29 tháng 3 2016

Đặt A=1+2+22+...........+22012

2A=2+22+23+...........+22013

2A-A=(2+22+23+...........+22013)-(1+2+22+............+22012)

2A-A=22013-1

=>A=22013-1

Trở lại bài toán,ta có:

M=\(\frac{1+2+2^2+........+2^{2012}}{2^{2014}-2}\)

=\(\frac{2^{2013}-1}{2.2^{2013}-2}=\frac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\frac{1}{2}\)

Vậy M=\(\frac{1}{2}\)

giống mình y đúc luôn

25 tháng 3 2018

Đặt A = 1 + 2 + 22 + 23 + ... + 22012

2A = 2 (1 + 2 + 22 + 23 + ... + 22012)

2A = 2 + 22 + 23 + 24 + ... + 22013

2A - A = (2 + 22 + 23 + 24 + ... + 22013) - (1 + 2 + 22 + 23 + ... + 22012)

=> A = 22013 - 1

Quay lại bài toán, ta có :

\(M=\dfrac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)

23 tháng 2 2016

Đặt M=\(\frac{A}{B}\)

A=1+2+22+23+.....+22012

2A=2+22+23+......+22013

2A-A=(2+22+23+....+22013) - (1+2+22+.....+22012)

A=22013 - 1

B=22014-2

B=2.(22013-1)

=>M=\(\frac{2^{2013}-1}{2.\left(2^{2013}-1\right)}\)=\(\frac{1}{2}\)

20 tháng 4 2018

\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)

\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)

\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)

\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)

\(2A=2+3+4+5+6+...+2012+2013+2014\)

\(2A=\dfrac{\left(2+2014\right).2013}{2}\)

\(A=\dfrac{2016.2013}{4}=504.2013\)

20 tháng 4 2018

\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)

\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)

\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)

\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)

\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)

\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)

\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)

\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)

3 tháng 3 2016

đặt tử là A

A=1+2+2^2+2^3+...+2^2012

2A=2+2^2+2^3+2^4+...+2^2013

2A-A=2+2^2+2^3+2^4+...+2^2013-1-2-2^2-2^3-...-2^2012

A=2^2013-1 

đặt mẫu là B

B=2^2014-2

=2(2^2013-1) 

từ đó suy ra A/B=(2^2013-1)/2(2^2013-1)=1/2

3 tháng 3 2016

\(\Rightarrow A=\frac{\left[2+2^2+2^3+...+2^{2013}\right]-\left[1+2+2^2+...+2^{2012}\right]}{2^{2014}-2}\)

\(\Rightarrow A=\frac{2^{2013}-1}{2^{2014}-2}\)