Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a dau nhi cuoi cung k phai j dau nha ! mk an lom !
\(a,\)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)
\(\Leftrightarrow\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)
\(\Leftrightarrow\left|x+5\right|=\frac{-43}{42}\)
ta có |x+5| \(\ge\)0 \(\forall x\)
Mà \(-\frac{43}{42}< 0\)nên ko có giá trị x thoả mãn
b,
\(\left|x+\frac{2}{3}\right|=\frac{1}{2}-\left(\frac{1}{4}+\frac{2}{3}\right)\)
\(\Leftrightarrow\left|x+\frac{2}{3}\right|=\frac{11}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{11}{12}\forall x\ge-\frac{2}{3}\\-x-\frac{2}{3}=\frac{11}{12}\forall< -\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{19}{12}\end{cases}}\)(thoả mãn đk)
\(\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right).\left(-1\frac{1}{5}\right)...\left(-1\frac{1}{2012}\right)\)
= \(-\frac{2}{3}.\frac{-3}{4}.\frac{-4}{5}...\frac{-2011}{2012}\)
= \(\frac{\left(-2\right).\left(-3\right).\left(-4\right)...\left(-2011\right)}{3.4.5...2012}\)
= \(\frac{2.3.4....2011}{3.4.5..2012}\)
= \(\frac{2}{2012}\)
= \(\frac{1}{1006}\)
\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)
\(=\frac{5.18-10.27+15.36}{5.2.18.2-10.2.27.2+15.2.36.2}\)
\(=\frac{5.18-10.27+15.36}{5.8.2.2-10.27.2.2+15.36.2.2}\)
\(=\frac{1}{2.2-2.2+2.2}\)
\(=\frac{1}{2.2}=\frac{1}{4}\)
\(E=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(E=\frac{3.4.5...100}{2.3.4...99}\)
\(E=\frac{100}{2}\)
\(E=50\)
k cho mk nha
\(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)
\(x+\frac{1}{8}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{8}\)
\(x=\frac{4}{16}-\frac{2}{16}\)
\(x=\frac{1}{8}\)
Vậy \(x=\frac{1}{8}\)
b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\)
\(\frac{8}{27}-x=\frac{1}{3}\)
\(x=\frac{8}{27}-\frac{1}{3}\)
\(x=\frac{8}{27}-\frac{9}{27}\)
\(x=-\frac{1}{27}\)
Vậy \(x=-\frac{1}{27}\)
c) \(x.\left(-\frac{1}{2}\right)^4=\frac{3}{8}\)
\(x.\frac{1}{16}=\frac{3}{8}\)
\(x=\frac{3}{8}:\frac{1}{16}\)
\(x=\frac{3}{8}.16\)
\(x=6\)
c) \(\left(\frac{1}{2}\right)^3.x=\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^5:\left(\frac{1}{2}\right)^3\)
\(x=\left(\frac{1}{2}\right)^2\)
\(x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4}\)
Chúc bạn học tốt !!!
a) \(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\Leftrightarrow x+\frac{1}{8}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}-\frac{1}{8}\Leftrightarrow x=\frac{1}{8}\)
b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\Leftrightarrow\frac{8}{27}-x=\frac{1}{3}\Leftrightarrow-x=\frac{1}{3}-\frac{8}{27}\Leftrightarrow-x=\frac{1}{27}\Leftrightarrow x=-\frac{1}{27}\)
c) \(x.\left(\frac{-1}{2}\right)^4=\frac{3}{8}\Leftrightarrow x.\frac{1}{16}=\frac{3}{8}\Leftrightarrow x=\frac{3}{8}:\frac{1}{16}\Leftrightarrow x=6\)
d) \(\left(\frac{1}{2}\right)^2.x=\left(\frac{1}{2}\right)^5\Leftrightarrow\frac{1}{8}.x=\frac{1}{32}\Leftrightarrow x=\frac{1}{32}:\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)
\(A=\frac{99}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
\(A=\frac{99}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{99}{100}-\frac{99}{100}\)
\(A=\frac{99-99}{100}=0\)
Bài 2
\(\left(3x+5\right).\left(2x-4\right)=0\)
\(TH1:3x+5=0\)
\(3x=-5\)
\(x=-\frac{5}{3}\)
\(TH2:2x-4=0\)
\(2x=4\)
\(x=2\)
\(\left(x^2-1\right).\left(x+3\right)=0\)
\(\Rightarrow x^2-1=0\)
\(x^2=1\)
\(\Rightarrow x=1\)
\(x+3=0\)
\(x=-3\)
\(5x^2-\frac{1}{2}x=0\)
\(\Rightarrow5x^2-\frac{x}{2}=0\)
\(\Rightarrow5x^2=\frac{5x^2}{1}=\frac{5x^2.2}{2}\)
\(10x^2-x=x.\left(10x-1\right)\)
\(\frac{x.\left(10x-1\right)}{2}=0\)
\(\frac{x.\left(10x-1\right)}{2}.2=0.2\)
\(10x-1=0\)
\(x=\frac{1}{10}=0.100\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}=0.100\\x=0\end{cases}}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\frac{x}{4}=\frac{3}{4}+\frac{1}{2}\)
\(\frac{x}{4}=\frac{5}{4}\)
\(\Rightarrow x=5\)
\(\frac{1}{8}+\frac{7}{8}:x=\frac{3}{4}\)
\(\frac{7}{8}:x=\frac{3}{4}-\frac{1}{8}\)
\(x=\frac{7}{8}:\frac{5}{8}\)
\(x=\frac{56}{40}=\frac{28}{20}=\frac{14}{10}=\frac{7}{5}\)
bạn tính từng ngoặc rồi dùng chiệt tiêu của phép nhân phân số nhé
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right).....\left(\frac{1}{1999}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{1998}{1999}\right)=-\frac{1}{1999}\)