Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik ko chép lại đề bài nha
a) = (123)2- 12- (36. 46)
= (126-1)- (3.4)6
= 126-1-126
= -1
=(20^2-19^2)+(18^2-17^2)+.....+(4^2-3^2)+(2^2-1^2)
=(20+19)(20-19)+(18+17)(18-17)+.....+((4+3)(4-3)+(2+1)(2-1)
=39+35+.....+7+3
=(3+39)10/2=210
a) Áp dụng hằng đẳng thức ta đc:
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+...+3\)
\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)
a) Áp dụng hằng đẳng thức ta đc:
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+...+3\)
\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)
b) mk nghĩ bước đầu tiên là phải bỏ ngoặc:
\(=20^2+18^2+16^2+...4^2+2^2-19^2-17^2-....-3^2-1^2\)
\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(4^2-3^2\right)-1^2\)
\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(4-3\right)\left(4+3\right)-1\)
\(=\left(39+35+31+...+7\right)-1\)
\(=\left(\left[\left(39-7\right):4+1\right]\cdot\left(39+7\right):2\right)-1=207-1=206\)
a) 1002-992+....+22-12
=(100+99)(100-99)+(98+97)(98-97)+...+(2+1)(2-1)
=100+99+98+...+2+1
b) bieu thuc tren =
202-192+182-172+...+22-12
tinh tuong tu cau a
ta có : \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\)
\(=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(=\left(20^2-1^2\right)-\left(19^2-2^2\right)+\left(18^2-3^2\right)-...-\left(11^2-10^2\right)\)
\(=21.\left(20-1\right)-21\left(19-2\right)+21\left(18-3\right)-...-21\left(11-10\right)\)
\(=21.19-21.17+21.15-...-21.1\)
\(=21\left(19-17+15-13+...+3-1\right)\)
\(=21\left(2+2+...+2\right)=21.2.5=210\)
Ta có:\(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\)
\(=20^2+18^2+16^2+...+4^2+2^2-19^2-17^2-15^2-...-3^2-1^2\)
\(=(20^2-19^2)+(18^2-17^2)+...+(4^2-3^2)+(2^2-1^2)\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(=20+19+18+17+...+4+3+2+1\)
\(=\dfrac{\left(20+1\right).20}{2}=\dfrac{21.20}{2}=210\)
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\\ =2^{32}-1 \)
ĐẶT
\(C=\text{ (20² + 18² + 16² + ... + 4² + 2²) - (19² + 17² + 15² + ... + 3² + 1²) }\)
\(C=\text{ 20² + 18² + 16² + ... + 4² + 2² - 19² - 17² - 15² - ... - 3² - 1² }\)
\(C=\text{ (20² - 19²) + (18² - 17²) + (16² - 15²) + .... + (4² - 3²) + (2² - 1²) }\)
\(C=\text{(20 + 19).(20 - 19) + (18 + 17).(18 - 17) + (16 + 15).(16 - 15) + .... + (2 + 1).(2 - 1) }\)
\(C=\text{ 20 + 19 + 18 + 17 + 16 + ..... + 2 + 1 }\)
\(C=\dfrac{20.\left(20+1\right)}{2}\)
\(C=210\)