\(\frac{2018\times2017-1}{2016\times2018+2017}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(\frac{2018\times2017-1}{2016\times2018+2017}\)

\(=\frac{2018\times\left(2016+1\right)-1}{2016\times2018+2017}\)

\(=\frac{2018\times2016+2018-1}{2016\times2018+2017}\)

\(=\frac{2018\times2016+2017}{2016\times2018+2017}\)

\(=1\)

Kết quả : \(=1\)

3 tháng 8 2018

Tách 2019 thành 2018+1

3 tháng 8 2018

     \(2018\times2018-2019\times2017\)

\(=2018\times\left(2017+1\right)-\left(2018+1\right)\times2017\)

\(=2018\times2017+2018-2018\times2017-2017\)

\(=2018\times2017-2018\times2017+2018-2017\)

\(=2018-2017\)

\(=1\)    

                       ~~~~~~~~~~~Hok tốt~~~~~~~~~~~

19 tháng 7 2018

\(a,\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\)

\(=\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=13\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{7.9}\right)\)

\(=13\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(=13.\frac{2}{9}=\frac{26}{9}\)

\(b,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

P/s :Dấu chấm là dấu nhân nha

19 tháng 7 2018

phần c đâu bn

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

17 tháng 6 2019

\(\frac{2016}{2017}\)\(\frac{2017}{2018}\)\(\frac{2018}{2016}\)< 3 

17 tháng 6 2019

2016/2017 + 2017/2018 + 2018/2016 > 3

Hok tốt

7 tháng 11 2017

bảng 1 nha bạn

7 tháng 11 2017

\(\frac{2017x2018+2}{2018x\left(2017+1\right)-2016}\)\(\frac{2017x2018+2}{2017x2018+2018-2016}\) = \(\frac{2017x2018+2}{2017x2018+2}\) = 1

17 tháng 5 2018

\(=\frac{2017\times\left(2018-1\right)}{2018\times2016+2018-2017}\)

\(=\frac{2017\times2017}{2018\times\left(2016+1\right)-2017}\)

\(=\frac{2017\times2017}{2018\times2017-2017}\)

\(=\frac{2017\times2017}{2017\times\left(2018-1\right)}=\frac{2017\times2017}{2017\times2017}=1\)

17 tháng 5 2018

bằng 0/2017

12 tháng 8 2019

 \(Ta\)có :\(a\)=\(\frac{2017\cdot2018-1}{2017.2018}\)=\(\frac{2017.2018}{2017.2018}\)-\(\frac{1}{2017.2018}\)=1-\(\frac{1}{2017.2018}\)

          \(b\)=\(\frac{2019.2020-1}{2019.2020}\)=\(\frac{2019.2020}{2019.2020}\)-\(\frac{1}{2019.2020}\)=1-\(\frac{1}{2019.2020}\)

Vì \(\frac{1}{2018.2019}\)\(\frac{1}{2019.2020}\)nên \(a\)\(b\)(sử dụng phần bù)

  

   

23 tháng 3 2023

so sánh a và b biết a=2017×2018−12017×20182017×20182017×20181và b =2019×2020−12019×20202019×20202019×20201
 

Ta có :\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}\)\(\frac{2016}{2016}=1\)

mà : 1 < 3

vậy:\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}< 3\)

26 tháng 6 2017

Giải: Ta có:

\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)

\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)

\(\frac{2018}{2016}=\frac{2016}{2016}+\frac{2}{2016}=1+\frac{2}{2016}\)

\(\Rightarrow3+\frac{-1}{2017}+\frac{-1}{2018}+\frac{2}{2016}=3+\frac{2}{2016}>3\)
 

2 tháng 3 2016

Tử số bằng mẫu số 

K-2016=1

K=2017

Muốn biết tại sao tử= mẫu thì tích nha

2 tháng 3 2016

\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)

\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)

\(K-2016=1\)

\(\Rightarrow K=1+2016\)

\(\Rightarrow K=2017\)