\(C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Làm thử thoi nhé :) 

\(C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}}\)

\(\frac{1}{1000}C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1000}{1.999}+\frac{1000}{3.997}+...+\frac{1000}{997.3}+\frac{1000}{999.1}}\)

\(\frac{1}{1000}C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1+999}{1.999}+\frac{3+997}{3.997}+...+\frac{997+3}{997.3}+\frac{999+1}{999.1}}\)

\(\frac{1}{1000}C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{1.999}+\frac{999}{1.999}+\frac{3}{3.997}+\frac{997}{3.997}+...+\frac{997}{997.3}+\frac{3}{997.3}+\frac{999}{999.1}+\frac{1}{999.1}}\)

\(\frac{1}{1000}C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{999}+\frac{1}{1}+\frac{1}{997}+\frac{1}{3}+...+\frac{1}{3}+\frac{1}{997}+\frac{1}{1}+\frac{1}{999}}\)

\(\frac{1}{1000}C=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)}\)

\(\frac{1}{1000}C=\frac{1}{2}\)

\(C=\frac{1}{2}.1000\)

\(C=500\)

Vậy \(C=500\)

Chúc bạn học tốt ~ 

23 tháng 5 2017

\(N=\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}\)

\(1000N=1+\frac{1}{999}+\frac{1}{3}+\frac{1}{997}+...+\frac{1}{997}+\frac{1}{3}+1\)

\(1000N=2\left[1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right]\)

\(N=\frac{1}{50}\left[1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right]\)

\(\frac{M}{N}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}}{\frac{1}{50}\left[1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right]}=\frac{1}{\frac{1}{50}}=50\)

28 tháng 7 2019

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2006}}\right)\)

\(A=2-\frac{1}{2^{2006}}\)

9 tháng 2 2018

giup minh nhe

9 tháng 2 2018

\(=\frac{1000\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)}{1000\left(\frac{1}{1.999}+\frac{1}{3.997}+...+\frac{1}{997.3}+\frac{1}{999.1}\right)}=\frac{1000\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)}{\frac{1+999}{1.999}+\frac{3+997}{3.997}+...+\frac{997+3}{997.3}+\frac{999+1}{999.1}}\)
\(=\frac{1000\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)}{1+\frac{1}{999}+\frac{1}{3}+\frac{1}{997}+...+\frac{1}{997}+\frac{1}{3}+\frac{1}{999}+1}=\frac{1000\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)}=500\)

\(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{6}{13}\)

\(\Rightarrow\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)

\(\Rightarrow\frac{6}{2x+1}=\frac{6}{13}\Rightarrow2x+1=13\Rightarrow x=6\)

mình giải hơi gọn có gì ko hiểu thì hỏi nha !

29 tháng 4 2020

bài 1 :

\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1

\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1

\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2 

chúc bạn học tốt !!!

29 tháng 4 2020

nếu có thì kết bạn rrrrrtt3448Y ok

12 tháng 10 2021

:)) ko bt làm :))

                                                                                    kí tên

                                                                                   cái nịt

28 tháng 10 2022

reeeeeeeee