K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}=\dfrac{3^{64}-1}{2}\)

b: \(Q=\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)

\(=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)

\(=\dfrac{\left(5^{32}-1\right)\left(5^{32}+1\right)}{24}=\dfrac{5^{64}-1}{24}\)

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

23 tháng 7 2019

\(8.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^4-1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)-3^{32}\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)-3^{32}=3^{32}-1-3^{32}=-1\)

7 tháng 7 2023

C
 

18 tháng 2 2020

Tính nhanh:
a)       

153^2 + 94 * 153 + 47^2
= 153 * (153 + 94) + 47^2
= 153 * 247 + 47^2
= 153 * (200 + 47) + 47^2
= 153 * 200 + 153 * 47 + 47^2
= 153 * 200 + 47 * (153 + 47)
= 153 * 200 + 47 * 200

= 200 * (153 + 47)
= 200 * 200
= 40000

b)126^2 - 152.126 + 5776
= 126 . 126 - 152.126 +126. 2888/63
= 126 . ( 126 - 152 + 2888/63)
= 126 . 1250/63
= 2500

Câu c bn tự làm nha

19 tháng 2 2020

a) \(153^2+94.153+47^2=153^2+2.47.153+47^2\)

\(=\left(153+47\right)^2=200^2=40000\)

b) \(126^2-152.126+5776=126^2-2.76.126+76^2\)

\(=\left(126-76\right)^2=50^2=2500\)

c) \(3^8.5^8-\left(15^4-1\right)\left(15^4+1\right)=15^8-\left[\left(15^4\right)^2-1\right]\)

\(=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)

17 tháng 6 2018

4) 9×1^2+42×1+50=9+42+50=101

17 tháng 6 2018

\(1/\):Tính \(\left(x+y\right)^2\)biết : \(x-y=5,x.y=2\)

Giải:

Ta có: \(x-y=5\)

\(\Rightarrow x^2-2xy+y^2=25\)

\(\Rightarrow x^2+y^2=25+2xy=25+2.2=29\)

\(\left(x+y\right)^2=\left(x^2+y^2\right)+2xy=29+2.2=33\)

14 tháng 10 2018

1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)

\(\left(x+2\right)\left(2-3x-1\right)=0\)

\(\left(x+2\right)\left(1-3x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)

2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)

\(3x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)

3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)

\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)

\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)

\(\left(4-x\right)\left(5x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)

4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)

\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)

\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)

\(\left(x-1\right)\left(4x+3-x-1\right)=0\)

\(\left(x-1\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)

5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)

\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)

\(\left(2x-3\right)\left(-2-x+3\right)=0\)

\(\left(2x-3\right)\left(1-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)

6) \(2x^2-5x-7=0\)

\(2x^2+2x-7x-7=0\)

\(2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\left(x+1\right)\left(2x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)

7) \(x^2-x-12=0\)

\(x^2+3x-4x-12=0\)

\(x\left(x+3\right)-4\left(x+3\right)\)

\(\left(x+3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)

8) \(3x^2+14x-5=0\)

\(3x^2+15x-x-5=0\)

\(3x\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(3x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)

4 tháng 9 2020

1) \(2x.\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)

\(=2x^2-14x-\left(x^2+x-6\right)-\left(x^2-4\right)\)

\(=-15x+10\)

b) \(2x.\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=2x.\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x^3-8\right)\)

\(=2x^3+4x^2+2x-x^3+3x^2-3x+1-x^3+8\)

\(=7x^2-x+9\)

c) \(\left(x-5\right)\left(x+5\right)\left(x+2\right)-\left(x+2\right)^3\)

\(=\left(x+2\right).\left[\left(x-5\right)\left(x+5\right)-\left(x+2\right)^2\right]\)

\(=\left(x+2\right).\left(x^2-25-x^2-4x-4\right)\)

\(=\left(x+2\right)\left(-4x-29\right)\)

\(=-4x^2-37x-58\)

d) \(\left(x-3\right)^3+\left(x-5\right)\left(x^2+5x+25\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-9x^2+27x-27+\left(x^3-125\right)-\left(x^3-1\right)\)

\(=x^3-9x^2+27x-151\)

e) \(\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+4\right)+3x^2+2x\)

\(=x^3-3x^2+3x-1-\left(x^3-8\right)+3x^2+2x\)

\(=5x+7\)

4 tháng 9 2020

Nhẩm ấy, ko nháp âu 

\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)

\(=2x^2-14x-\left(x^2-2x+3x-6\right)-\left(x^2-4x+4x-16\right)\)

\(=2x^2-14x-x^2+x-6-x^2+16\)

\(=-13x-10\)

\(2x\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=2x\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x-2\right)\left(x+2\right)\)

\(-2x^3+4x^2+2x-x^3+3x^2-3x+1-x^2+4\)

\(=-3x^3+6x^2-x+5\)

2.Tim x

a,(2x+1)2-4(x+2)2=9

<=> (4x2+4x+1)-4(x2+4x+4)=9

<=> -12x-15=9

<=> -12x=24

<=> x=-2

19 tháng 6 2019

\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)

\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)

\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)

11 tháng 10 2019

1)  (3x+4)(x+1) = 3x2+7x+4 đặt là a

(6x+7)2= 36x2+84x+49 = 12a+1

=> a(12a+1)- 6 = 12a2 -a -6 = (3a+2)(4a-3) = (9x2+21x+14)(12x2+28x+13)

2) (x-2)2=x2-4x+4 đặt là a

(2x-5)(2x-3)= 4x2-16x+15 =4a-1

=> a(4a-1)-5 = 4a2-a-5 = (4a-5)(a+1) = ( 4x2-16x+11)(x2-4x+5)

3) đặt (x+3)2 =a ta làm tương tự

4) (x-2)(x-10)(x-4)(x-5) = (x2-12x+20)(x2-9x+20)

đặt x2+20=a => (a-12x)(a-9x)-54x2 = a2-21ax+54x2 = (a-18x)(a-3x) = (x2-18x+20)(x2-3x+20)