Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
A = -12 + 22 - 32 + 42 - ... - 992 + 1002
A = 1002 - 992 + ... + 42 - 32 + 22 - 12
A = (100 + 99).(100 - 99) + ... + (4 + 3).(4 - 3) + (2 + 1).(2 - 1)
A = 100 + 99 + ... + 4 + 3 + 2 + 1
\(A=\frac{\left(1+100\right).100}{2}=101.50=5050\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
2B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)...(332 + 1)
2B = (32 - 1)(32 + 1)(34 + 1)...(332 + 1)
2B = (34 - 1)(34 + 1)...(332 + 1)
2B = 364 - 1
\(B=\frac{3^{64}-1}{2}\)
1272 + 146.127 + 732
= 1272 + 2 . 73 .127 + 732
= (127 + 73 ) 2
= 200 2
a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
ta có \(2+1=2^2-1\)
\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)
\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(T=2^{32}-1\)
bạn ơi nơi chổ mấy cái \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha
b)
\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)
\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)
\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)
\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)
\(U=3+7+...+199\)
\(U=1+2+3+\text{4+...+99+100}\)
số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)
tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)
à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải
\(\left(2^2+4^2+6^2+...+100^2\right)-\left(1^2+3^2+5^2+99^2\right)\\ =\left(2^2-1^2\right)+\left(4^2-3^2\right)+\left(6^2-5^2\right)+...+\left(100^2-99^2\right)\\ =\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+\left(6-5\right)\left(6+5\right)+...+\left(100-99\right)\left(100+99\right)\\ =3+7+11+...+199=\frac{50.202}{2}=5050\)