\(A=\frac{1}{182}+\frac{1}{210}+\frac{1}{240}+\frac{1}{276}+\frac{1}{306}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2016

A=1/13.14+1/14.15+1/15.16+1/16.17=1/17.18+1/18.19

A=1/13-1/14+1/14-1/15+1/15-1/16+1/16-1/17+1/18-1/19

A=1/13-1/19

A=6/247

18 tháng 4 2018

3577/10 = 357,7

18 tháng 4 2018

giải rõ hộ mk 

7 tháng 8 2016

\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)

\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)

\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{6}-\frac{1}{15}\)

\(A=\frac{1}{10}\)

7 tháng 8 2016

A=\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)

=\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)

=\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{14}-\frac{1}{15}\)

=\(\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)

20 tháng 7 2016

\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+...+\frac{1}{210}=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+...+\frac{1}{14.15}\)

\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+...+\frac{1}{14}-\frac{1}{15}\)

\(=\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)

20 tháng 7 2016

\(A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}+\frac{1}{182}+\frac{1}{210}\)

\(A=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+\frac{1}{14.15}\)

\(A=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}\)

\(A=\frac{1}{6}-\frac{1}{15}\)

\(A=\frac{1}{10}\)

10 tháng 12 2017

Ta có :

\(B=\frac{308}{1}+\frac{307}{2}+\frac{306}{3}+...+\frac{3}{306}+\frac{2}{307}+\frac{1}{308}\)

\(B=\left(\frac{307}{2}+1\right)+\left(\frac{306}{3}+1\right)+...+\left(\frac{3}{306}+1\right)+\left(\frac{2}{307}+1\right)+\left(\frac{1}{308}+1\right)+1\)

\(B=\frac{309}{2}+\frac{309}{3}+...+\frac{309}{306}+\frac{309}{307}+\frac{309}{308}+\frac{309}{309}\)

\(B=309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{306}+\frac{1}{307}+\frac{1}{308}+\frac{1}{309}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{308}+\frac{1}{309}}{309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{308}+\frac{1}{309}\right)}\)

\(\frac{A}{B}=\frac{1}{309}\)

23 tháng 1 2017

A = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{308}\)+ \(\frac{1}{309}\)

B = \(\frac{308}{1}\)+ \(\frac{307}{2}\)+ \(\frac{306}{3}\)+\(\frac{3}{306}\) + \(\frac{2}{307}\)+ \(\frac{1}{308}\)

=> B = \(\frac{309-1}{1}\)+ \(\frac{309-3}{3}\)+... + ( 309 ... )

=> B = 309 + 309 . ( \(\frac{1}{2}\) + \(\frac{1}{3}\)+... + \(\frac{1}{306}\)+ \(\frac{1}{307}\)+ \(\frac{1}{308}\)+ \(\frac{1}{309}\)- \(\frac{1}{1}\)+ \(\frac{2}{2}\)+ ... + \(\frac{308}{308}\)+ \(\frac{309}{309}\)

=> B = 309 . ( \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ ... + \(\frac{1}{306}\)+ \(\frac{1}{307}\)+ \(\frac{1}{308}\)+ \(\frac{1}{309}\))

=> \(\frac{A}{B}\)= \(\frac{1}{309}\)

5 tháng 7 2016

Lâu rồi bạn còn cần lời giải ko mình giải cho

16 tháng 4 2016

\(B=308/1+307/2+306/3+...+1/308 \)

\(B=308+307/2+306/3+...+1/308\) chia số 308 thành 308 số 1

B=307/2+1+306/3+1+...+1/308+1+1

B=309/2+309/3+309/4+...+309/308+309/309

B=309(1/2+1/3+1/4+...+1/309)=309A

Suy ra A/B=1/309

16 tháng 4 2016

=(1/2+1/31/4...1/307/1/3081/309)/(309-1/1+309-2/2+...+309-307/307+309-308/308)

=(1/21/31/4...1/3071/3081/309)/(309/1-1+309/2-1+...+309/307-1+309/308-1)

=(........................................)/(309/309309/2309/3...309/307+309/308)

=(........................................)/[309x(1/309+1/308+...+1/41/31/2)]

Thấy tử và mẫu giống nhau thì ta rút:

=1/309

14 tháng 8 2017

Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)

  \(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)

  \(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)

 \(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)

14 tháng 8 2017

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)