Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )
\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )
\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)
b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)
\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)
\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )
c) MTC = ( x+ 2)2(x - 2)2
Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)
\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)
\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)
d) MTC = xyz( x - y)( y - z)( x - z)
Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
Cộng các phân thức lại ta có :
\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)
\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)
\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)
Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina
Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron
Akai Haruma Võ Đông Anh Tuấn
mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
c)(x2+x)2-2(x2+x)-15
đặt x2+x=a ta có
a2-2a-15
=a2+3a-5a-15
=(a2+3a)-(5a+15)
=a(a+3)-5(a+3)
=(a+3)(a-5)
thay a=x2+x
(x2+x+3)(x2+x-5)
1,\(3x\left(x-y\right)+5\left(y-x\right)=\)
\(\left(x-y\right)\left(3x-5\right)\).Vậy ...là -5
2,A=\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{11}\right)\)=\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{9}{10}.\dfrac{10}{11}\)=\(\dfrac{1}{11}\)
3, Ta có: A=389 = (39 - 1)9 (1)
Áp dụng nhị thức Newton (1) ta có:
A=399-9.398+...+\(\dfrac{9.8}{2}.39^2\)-9.39+1
Ta thấy các hạng tử trên đều chia hết cho 39 tức là chia hết cho 13 nhưng chỉ có duy nhất số hạng cuối cùng là 1
Vậy A=BS13+1 hay 389 chia 13 dư 1
Bài 1:
a) \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}>\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
{bước 1 là quy đồng bỏ mẫu, bạn chọn mẫu là BCNN của các mẫu số ở tất cả các phân thức trong BPT, phải chọn MC là BCNN vì số càng đơn giản càng dễ tính toán}
\(\Leftrightarrow2x-3+5x^2-10x>5x^2-14x+21\)
{chuyển vế}
\(\Leftrightarrow2x-10x+14x>21+3\) \(\Leftrightarrow6x>24\)
{chia cả 2 vế của bpt cho 6}
\(\Leftrightarrow x>4\)
Vậy nghiệm của BẤT phương trình là x>4
{bạn chú ý là bất phương trình chứ KHÔNG PHẢI là nghiệm của phương trình nhé}
cũng có thể kết luận thế này: Vậy S={x|x>4}
hay biểu diễn trên trục số (nếu đề yêu cầu)
{khi đã biểu diễn trên trục số thì bạn không cần phải kết luận như 2 cách trên nữa nhé, dư đấy.}
1b)
\(\dfrac{6x+1}{18}+\dfrac{x+3}{12}\le\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)
{tương tự: quy đồng bỏ mẫu}
\(\Leftrightarrow12x+2+3x+9\le30x+18+48-20x\)
{chuyển vế các hạng tử}
\(\Leftrightarrow15x-10x\le66-11\)\(\Leftrightarrow5x\le55\)
{chia cả 2 vế cho 5}
\(\Leftrightarrow x\le11\)
Vậy \(x\le11\)
(cách kết luận như câu a, nói rồi không nói lại nhé ^^!)
\(A=\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}+\dfrac{1}{\left(x+9\right)\left(x+11\right)}\)\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}+\dfrac{1}{x+9}-\dfrac{1}{x+11}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+11}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{x+11}{\left(x+1\right)\left(x+11\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+11\right)}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{x+11-x-1}{\left(x+1\right)\left(x+11\right)}\right)=\dfrac{1}{2}.\dfrac{10}{\left(x+1\right)\left(x+11\right)}=\dfrac{10}{2\left(x+1\right)\left(x+11\right)}\)