K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

Ta có:

\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{9901}{9900}\)

\(A=1+\frac{1}{2}+1+\frac{1}{6}+1+\frac{1}{12}+...+1+\frac{1}{9900}\)\(A=1+1+1+...+1(51c/s)+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(A=51+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=51+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=51+1-\frac{1}{100}\)

\(A=52-\frac{1}{100}\)

\(A=\frac{5199}{100}\)

Cái đoạn 1+1+1+...+1 ( 51 c/s) số tớ ko thể giải thích trên máy tính đc nên bn tự suy nghĩ nhé:)))

2 tháng 11 2024

A= 3/2+7/6+...+9901/9900

A=1+1/2+1+1/6+1+1/12+...+1/9900

A=(1+1+1+...+1)+(1/2+1/6+1/12+...+1/9900)

A=(1+1+1+...+1)+(1/1x2+1/2x3+1/3x4+...+1/99x100)

A=(1+1+1+...+1)+(1/1-1/2+1/2-1/3+1/3-1/4+1/4-...-1/99+1/99-1/100)

A=99+(1/1-1/100)

A=99+99/100

A=9999/100

 

A=9900/100+99

a) \(\frac{13}{7}-\frac{1}{2}\times\frac{13}{7}+\frac{3}{2}\times\frac{13}{7}\)

\(=\frac{13}{7}\times\left(1-\frac{1}{2}+\frac{3}{2}\right)\)

\(=\frac{13}{7}\times2\)

\(=\frac{26}{7}\)

b) \(\frac{1}{15}\times\left(\frac{3}{7}+\frac{5}{19}\right)+\frac{3}{7}\times\left(\frac{5}{19}-\frac{1}{15}\right)\)

\(=\frac{1}{15}\times\frac{3}{7}+\frac{1}{15}\times\frac{5}{19}+\frac{3}{7}\times\frac{5}{19}-\frac{3}{7}\times\frac{1}{15}\)

\(=\frac{5}{19}\times\left(\frac{1}{15}+\frac{3}{7}\right)\)

\(=\frac{5}{19}\times\frac{52}{105}\)

\(=\frac{52}{399}\)

c) \(\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}\)

\(=5\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\right)\)

\(=5\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5\times\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=5\times\frac{49}{100}\)

\(=\frac{49}{20}\)

Lần sau nên đăng ít thôi

14 tháng 12 2019

trước số 1/9900 là số mấy vậy em

20 tháng 9 2015

\(\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)\)

=         1             +                  2                +               2

= 5

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\)

=     \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

=\(1-\frac{1}{7}\)

=\(\frac{6}{7}\)

23 tháng 8 2015

A = 1 + 1/110 + 1 + 1/90 + ... + 1  + 1 /2 

A = 10 + 1/1.2+ 1 /2.3 + ... + 1/9.10 + 1/10.11

A = 10 + 1/1 - 1/2 + 1 /2 - 1/3 + ... + 1/9 - 1/10 + 1/10 - 1/11

A = 10 + 1/1 - 1/11

A = 10 + 10/11

A = 120/11

23 tháng 8 2015

A = \(\frac{111}{110}+\frac{91}{90}+\frac{73}{72}+...+\frac{13}{12}+\frac{7}{6}+\frac{3}{2}\)

A = \(\left(\frac{1}{2}+1\right)+\left(\frac{1}{6}+1\right)+\left(\frac{1}{12}+1\right)+....+\left(\frac{1}{110}+1\right)\)

A = (1 + 1 + 1 +...+ 1) + \(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

A = 10 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

A = \(10+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

A = \(10+\left(1-\frac{1}{11}\right)\)

A = \(10+\frac{10}{11}\)

A = \(\frac{120}{11}\)

20 tháng 8 2017

\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)

\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)

\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)

\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)

làm giống như trên

\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)

\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)

\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)

\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)

\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)

\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)

\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)

\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)

\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)

P/S: . là nhân nha

sxasxsxxsxsxssxsxsxsxsx232332321322

23 tháng 8 2017

k mình đi sinichi

11 tháng 12 2015

1+1+2+2+3+3+4+4+5+5+6+6+7+7+8+9+8+9+10+12+13+14+15+16+17+18+19+20+30+1000000=10000274

10000274

23 tháng 6 2019

#)Giải :

Bài 1 :

Để đánh số trang có 1 chữ số cần 9 số 

Để đánh số trang có 2 chữ số cần ( 99 - 10 ) : 1 + 1 = 90 số 

Vì với 398 chữ số không thể đánh đến 1000 trang => Các số trang còn lại đều là số trang có 3 chữ số 

Số trang có 3 chữ số là : 398 : [( 9 x 1 ) + ( 90 x 2 )] : 3 = 69 trang

Vậy cuốn sách đó có 90 + 9 + 69 = 168 trang

Bài 2 : 

Xét dãy số 6 ; 16 ; 26 ; 36 ; ... ; 2016

Dãy số trên có ( 2016 - 16 ) : 10 + 1 + 1 + 2 = 204 số tương ứng với 204 số 6

Tiếp tục xét từ 60 - 69

Từ 60 đến 69 có 8 số ( số 66 đã tính ở trên ) nên tương ứng với 8 số 6

Tiếp tục xét từ 600 - 699 

Từ 600 - 699 có 90 số ( các số 606 ; 616 ; ... ; 696 đã tính ở trên ) nên tương ứng với 90 số 6

Tương tự với các số từ 160 - 169 ; 260 - 269 ; ... ; 960 - 969 đều có 8 x 7 = 56 số 6 

Thui lười quá chịu @@

23 tháng 6 2019

#)Giải :

Bài 3 :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)