Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : 3 > 2 và 300 > 200
\(\Rightarrow3^{300}>2^{200}\)
b) Ta có : 1000 > 999
\(\Rightarrow5^{1000}>5^{999}\)
c) Ta có : \(243^5=\left(3^5\right)^5=3^{25}\)
\(3.243^5=3.\left(3^5\right)^5=3.3^{25}=3^{26}\)
\(3.27^8=3.\left(3^3\right)^8=3.3^{24}=3^{25}\)
mà 25 = 25 < 26
\(\Rightarrow3^{25}=3^{25}< 3^{26}\)
\(\Rightarrow243^5=3.27^8< 3.243^5\)
d) Ta có : \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
mà 15 > 14
\(\Rightarrow5^{15}>5^{14}\)
\(\Rightarrow125^5>25^7\)
\(a.\) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3}{-13}\)
\(=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\frac{3^3.\left(-1\right)}{1}=-27\)
\(b.\)\(A=2^2+4^2+6^2+...+20^2=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(A=2^2.\frac{10.\left(10+1\right).\left(2.10+1\right)}{6}=4.385=1540\)
( Ta có: công thức tính tổng bình phương liên tiếp tứ 1 đến n là: \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\))
\(c.\)\(B=100^2+200^2+...+1000^2=\left(100.1\right)^2+\left(100.2\right)^2+...+\left(100.10\right)^2\)
\(B=100^2.1^2+100^2.2^2+...+100^2.10^2=100^2.\left(1^2+2^2+...+10^2\right)\)
Áp dụng công thức \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có: \(B=100^2\times385=3,850,000\)
Lời giải:
$A=[(-1)+5]+[(-9)+13]+....+[(-41)+45]$
$=4+4+4+....+4$
Số lần xuất hiện của 4 là: $[(45-1):4+1]:2=6$
$A=4\times 6=24$
-------------------------
$B=(1-2-3+4)+(5-6-7+8)+....+(997-998-999+1000)$
$=0+0+.....+0=0$
VÌ 200 X 5 =1000
MÀ 1000 - 1000 = 0
\(\Rightarrow\)A=0
=0 bạn nha