K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
3 tháng 3 2019

\(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)

\(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+..+\dfrac{1}{195}\) ( là 195 ms đúng ! )

\(B=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{13\cdot15}\)

\(B=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)

\(B=\dfrac{1}{2}\left(1-\dfrac{1}{15}\right)=\dfrac{1}{2}\cdot\dfrac{14}{15}=\dfrac{7}{15}\)

\(C=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{98\cdot100}\)

Rồi làm tương tự cân b nha!

\(D=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}\)

\(+\dfrac{1}{57}-\dfrac{1}{87}\)

\(D=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)

3 tháng 3 2019

Cảm ơn bạn nhìu nha!!!yeuvuihihi

15 tháng 5 2017

a) \(1-\dfrac{1}{2}=\dfrac{1}{2}\)

\(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{3-2}{6}=\dfrac{1}{6}\)

\(\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{4-3}{12}=\dfrac{1}{12}\)

\(\dfrac{1}{4}-\dfrac{1}{5}=\dfrac{5-4}{20}=\dfrac{1}{20}\)

\(\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{6-5}{30}=\dfrac{1}{30}\)

b) \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)

\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+-\dfrac{1}{6}\)\(=1+-\dfrac{1}{6}\)

\(=\dfrac{5}{6}\)

3 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

16 tháng 11 2018

1/

a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)

\(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)

\(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)

16 tháng 11 2018

b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993

2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993

2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993

2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993

2.(1 − 1/x+1) = 3984/1993

1 − 1/x + 1= 3984/1993 :2

1 − 1/x+1 = 1992/1993

1/x+1 = 1 − 1992/1993

1/x+1=1/1993

<=>x+1 = 1993

<=>x+1=1993

<=> x+1=1993

<=> x = 1993-1

<=> x = 1992

12 tháng 4 2017

Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:

a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)

Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)

Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}.\dfrac{500}{501}\)

\(=\dfrac{100}{501}\)

12 tháng 4 2017

Bài 2: Tính:

a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(\Rightarrow A=\dfrac{100}{2}=50\)

3 tháng 8 2017

a, (\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)).10 - x = 0

<=> \(\dfrac{5}{6}.10-x=0\)
<=> \(\dfrac{25}{3}-x=0\)
<=> x = \(\dfrac{25}{3}\) (thỏa mãn)
@Hoàng Mạnh Quân

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5....
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít