Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
\(B=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(B=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(\frac{-3}{4}-\frac{2}{9}-\frac{1}{36}+\frac{1}{72}\right)\)
\(B=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)+\left(\frac{-54}{72}-\frac{16}{72}-\frac{2}{72}+\frac{1}{72}\right)\)
\(B=1-\frac{71}{72}\)
\(B=\frac{72}{72}-\frac{71}{72}\)
\(B=\frac{1}{72}\)
vay \(B=\frac{1}{72}\)
A= 1/3- 3/4+ 3/5+ 1/72- 2/9- 1/36+ 1/15
A= ( 1/3- 3/5+ 1/15) - (3/4- 1/72+ 2/9+ 1/36)
A= (5/15- 9/15+ 1/15) - (54/72- 1/72+ 16/72+ 2/36)
A= 1- 71/72
A= 1/72
\(\frac{a}{b}+\frac{-a}{b}+1=\frac{a+\left(-a\right)}{b}+1=0+1=1\)
\(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(=\left\{\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right\}\)\(-\left\{\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right\}\)\(+\frac{1}{72}\)
\(=1-1+1+\frac{1}{72}\)
\(=\frac{1}{72}\)
Bạn nhờ mik giúp thì phải nhớ tíck mik đó
A=1/3-3/4-(-3/5)+1/72-2/9-1/36+1/15
A=(1/3+3/5+1/15)-(3/4+2/9+1/36)+1/72
A=1-1+1+1/72=1/72
k mình nha