Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x [m x 100 + (m - 1) x 101 + (m - 2) x102 + ………. +2 x 10m-2 + 1 x 10m-1]
(Bạn nhớ công thức trên sẽ làm đc bài tập 1 cách dễ dàng)
a, A=2+22+222+2222+...+222...2(10 chữ số 2)
Ta có:
A = 2 + 22 + 222 + 2222 + ... + 2222222222
A = 2 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
A = 2 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
A = 2 . 1234567900 = 2 469 135 800
b, B=3+33+333+3333+...+333...3(10 chữ số 3)
Ta có:
B = 3 + 33 + 333 + 3333 + ... + 3333333333
B = 3 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
B = 3 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
B = 3 . 1234567900 = 3 703 703 700.
c, C=5+55+555+5555+...+555...5(5 chữ số 5)
Ta có:
C = 5 + 55+ 555 + 5555 + ... + 5555555555
C = 5 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
C = 5 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
C = 5 . 1234567900 = 6 172 839 500.
Dài quá đó bạn !
a, 2
22
+ 222
2222
22222
2 x 5 + 2x 4 x 10 + 2 x 3 x 100 + 2 x 2 x 1000 + 2 x 1 x 10000
2 x (5+4x10+3x100+2x1000+1x10000)
2x [5x100 + (5-1)x101 + (5-2) x102 + (5-3) x103 + (5-4) x104]
Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x (mx100 + (m-1)x101 + (m-2) x102 +……….+2 x 10m-2 + 1x10m-1
Tính tổng trên:
2 x (10x1 + 9x10 + 8x100 + 7x1000 + 6x10000 + 5x100000 + …+ 1x10000000000) =
2 x (10+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000) =
2 x 1234567900 = 2 469 135 800
b, tương tự câu a,
ko hieu tai sao co the dat ra mot cau hoi vo li nhu vay?
deo hieuluon
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
333...3 x 333...3
(10 c/s 3)(10 c/s 3)
= 333...3 x 3 x 111...1
(10 c/s 3) (10 c/s 1)
= 999...9 x 111...1
(10 c/s 9) (10 c/s 1)
= (1000...0 - 1) x 111...1
(10 c/s 0) (10 c/s 1)
= 1000...0 x 111...1 - 111...1
(10 c/s 0) (10 c/s 1)(10 c/s 1)
= 111...1000...0 - 111...1
(10 c/s 1)(10 c/s 0)(10 c/s 1)
= 111...10888...89
(9 c/s 1) (9 c/s 8)
= 111.....1 < 10 chữ số 1 > x 3 x 3333.....3 < 10 chữ số 3 >
=111....1 < 10 chữ số 1 > x 9999...9 < 10 chữ số 3 >
=1111....1< 10 chữ số 1 > x (100...0< 10 chữ số 0 > - 1)
=111...1 < 10 chữ số 1 > x 100...0 < 10 chữ số 1 > - 111...1 < 10 chữ số 1 > x 1
=111....10000....0< 10 chữ số 1 và 10 chữ số 0 > - 1111...1< 10 chữ số 1 >
=111...10888...89< 10 chữ số 1 và 10 chữ số 8 >
Đặng Quỳnh Ngân