K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)

25 tháng 9 2016

115/126

19 tháng 6 2015

2/15+2/35+2/63+.....+2/9603=2/3.5+2/5.7+2/7.9+...2/97.99

=1/3-1/5+1/5-1/7+...+1/97-1/99

=1/3-1/99

=33/99-1/99

=32/99

19 tháng 6 2015

\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{9603}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

12 tháng 7 2017

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)

\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+...+\left(1-\frac{1}{9999}\right)\)

\(=\left(1-\frac{1}{1\cdot3}\right)+\left(1-\frac{1}{3\cdot5}\right)+\left(1-\frac{1}{5\cdot7}\right)+\left(1-\frac{1}{7\cdot9}\right)+...+\left(1-\frac{1}{99\cdot101}\right)\)

\(=\left(1+1+1+1+...+1\right)-\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

Có tất cả : (101 - 3) : 2 + 1 = 50 chữ số 1 => (1 + 1 + 1 + .... + 1) = 1 x 50 = 50 

\(\Rightarrow50-\frac{1}{2}\cdot\left(1-\frac{1}{101}\right)\)

\(=50-\frac{1}{2}\cdot\frac{100}{101}=50-\frac{100}{101}=\frac{4950}{101}\)

Vậy \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}=\frac{4950}{101}\)

15 tháng 8 2016
  • \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)

           \(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\) 

            \(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)

            \(4.B=1-\frac{1}{97}\)

             \(4.B=\frac{96}{97}\)

                 \(B=\frac{96}{97}:4\)

                 \(B=\frac{24}{97}\)

5 tháng 1 2016

\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+...+\frac{2}{899}\)
\(=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{29\cdot31}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{31}\)
\(=\frac{1}{3}-\frac{1}{31}\)
\(=\frac{28}{93}\)

26 tháng 6 2017

\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{899}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{29.31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{31}\)

\(\frac{1}{3}-\frac{1}{31}+0+0+...+0\)

\(\frac{29}{93}\)

1 tháng 7 2015

\(\frac{2^2}{15}+\frac{2^2}{35}+\frac{2^2}{63}+\frac{2^2}{99}+\frac{2^2}{143}=2\cdot\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\right)=2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)=2\cdot\left(\frac{1}{3}-\frac{1}{13}\right)=2\cdot\frac{10}{39}=\frac{20}{39}\)

1 tháng 7 2015

\(=2\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

              \(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

              \(=2\left(1-\frac{1}{13}\right)=2.\frac{12}{13}=\frac{24}{13}\)

4 tháng 9 2015

A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99

   = ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )

   = ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )

   = ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )

   = ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )

   = 8/9 + 1/2 . ( 1 - 1/11 )

   = 8/9 + 1/2 . 10/11

   = 8/9 + 5/11

   = 133/99

4 tháng 9 2015

A = 1/2 + 1/3 + 1/6 + 1/12 + 1/15 + 1/20 + 1/30 + 1/35 + 1/42 + 1/56 + 1/63 + 1/72 + 1/99

   = ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 ) + ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )

   = ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/8.9 ) + ( 1/1.3 + 1/3.5 + ... + 1/9.11 )

   = ( 1 - 1/2 + 1/2 - 1/3 + ... + 1/8 - 1/9 ) + 1/2 . ( 2/1.3 + 2/3.5 + ... + 2/9.11 )

   = ( 1 - 1/9 ) + 1/2 . ( 1 - 1/3 + 1/3 - 1.5 + ... + 1/9 - 1/11 )

   = 8/9 + 1/2 . ( 1 - 1/11 )

   = 8/9 + 1/2 . 10/11

   = 8/9 + 5/11

   = 133/99

3 tháng 5 2015

\(M=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+...+1-\frac{1}{9999}\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)(Có (99 - 1): 2+ 1 = 50 số 1)

\(M=50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(M=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(M=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{5050-100}{101}=\frac{4950}{101}\)

3 tháng 7 2018

2

Đâu rồi