Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 2x22x23x....................x22019
=> \(2A=2^2.2^3.2^4...2^{2020}\)
\(\Rightarrow A=2A-A=2^{2020}-2\)
Qưertyuiopasdfghjklzxcvbnm1234567890@#₫&*()'l"'Zx-+=%/:;+-=
X2=3 x2=25
=> X=\(\pm\sqrt{3}\) => x=5
X2=36
=> x=6
2.(x-1)2+50= 9
2.(x-1)2+1= 9
2.(x-1)2= 8
(x-1)2 = 8/2
(x-1)2 = 4
(x-1)2 = (2)2
x-1=(\(\pm\)2)
TH1: x-1= 2 TH2: x-1=-2
x=2+1 x =(-2)+1
x= 3 x = -1
Vậy x\(\in\)\(\left\{3;1\right\}\)
`x^2=3`
`=>x=\sqrt{3}\or\x=-\sqrt{3}`
`x^2=36`
`<=>x^2=(+-6)^2`
`<=>x=+-6`
`x^2=25`
`<=>x^2=(+-5)^2`
`<=>x=+-5`
`2x^2+(-20)=55`
`<=>2x^2-20=55`
`<=>2x^2=75`
`<=>x^2=75/2`
`<=>x=+-\sqrt{75/2}`
`2(x-1)^2+5^0=9`
`<=>2(x-1)^2+1=9`
`<=>2(x-1)^2=8`
`<=>(x-1)^2=4`
`<=>x-1=2\or\x-1=-2`
`<=>x=3\or\x=-1`
\(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{19\cdot20}\)
\(=2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(=2\cdot\left(1-\dfrac{1}{20}\right)\)
\(=2\cdot\dfrac{19}{20}\)
\(=\dfrac{19}{10}\)
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(M=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=2\left(1-\frac{1}{100}\right)\)
\(M=2.\frac{99}{100}\)
\(M=\frac{99}{50}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{97.99}\)
\(N=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}\left(1-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\frac{98}{99}\)
\(N=\frac{49}{33}\)