Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)
2019 . 2021 - 2020. 2020
= 2019(2020+1) - 2020( 2019+1)
= 2019 .2020 + 1.2019 - 2020.2019 + 1.2020
= 2019 -2020
= -1
\(2019.2021-2020.2020\)
\(=2019\left(2020+1\right)-2020\left(2019+1\right)\)
\(=2019.2020+2019-2020.2019+2020\)
\(=2019-2020\)
\(=-1\)
2019^2020 tận cùng là 1, 2021^2019 tận cùng là 1 => 2019^2020 + 2021^2019 + 2022 tận cùng là 4 suy ra số dư là 4
a, \(\frac{15}{106}\)và \(\frac{21}{133}\)
Ta có:
\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)
\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)
Vậy ........
b, \(\frac{31}{100}\)và \(\frac{89}{150}\)
Ta có:
\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)
\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)
Vậy........
c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)
Ta có:
\(\frac{2020}{2019}-1=\frac{1}{2019}\) ;
\(\frac{2021}{2020}-1=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)
\(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
Vậy .........
d, n+2019/n+2021 và n+2020/n+2022
Câu d bn tự lm nhé
\(A=7^{2022}-7^{2021}+7^{2020}-7^{2019}+...+7^2-7\)
\(\Rightarrow7A=7^{2023}-7^{2022}+7^{2021}-...+7^3-7^2\)
\(\Rightarrow8A=A+7A=7^{2022}-7^{2021}+...+7^2-7+7^{2023}-7^{2022}+...+7^3-7^2=7^{2023}-7\)
\(\Rightarrow A=\dfrac{7^{2023}-7}{8}\)
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+ 2022+2023 =(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+2022+2023
=(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221