Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{1010}\right).\left(1-\frac{3}{2010}\right)....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-1\right).\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...0.\left(1-\frac{2011}{2010}\right)\)
\(=0\)
Bài 1 :
a) -Ta có: tam giác EAC=tam giác BAG(c.g.c
=> EC=BG và góc AEC=góc ABG.
=> EC=BG và EC vuông góc với BG(1).
-Lại có: MI là đường trung bình tam giác EGB
=> MI// BG; MI=1/2. BG.
-Tương tự ta có: +) IN là đường trung bình tam giác EGC.
+) NK là đường trung bình tam giác BGC.
+) MK là đường trung bình tam giác EBC.
=> MI//NK// BG; MI=NK=1/2.BG
và MK//NI//EC; MK=IN=1/2.EC
-Lại có: EC=BG và EC vuông góc với BG( theo (1)).
-Từ các điều trên=> MINK là hình vuông(đpcm).
Phần b): -Lấy H đối xứng với A qua I; gọi giao điểm của AI với BC là O.
-Ta có: EHGA là hình bình hành=> HG//EA;HG=EA=AB.
=> góc HGA+góc EAG=180 độ.
-Lại có: góc EAG+góc BAC=180 độ.
=> góc BAC=góc HGA; và có HG=AB, AG=AC.
=> tam giác HGA=tam giác BAC(c.g.c).
=> HA=BC; góc HAG=góc ACB.Mà góc HAG+góc OAC= 90 độ. => góc OAC+góc ACB=90 độ.
=> AI=1/2.BC; AI vuông góc với BC.
-Do tam giác ABC cố định=> đường cao AO từ A xuống BC cố định.
-Mà IA vuông góc với BC=> I thuộc đường cố định và I thuộc tia đối tia AO sao cho IA=1/2.BC.
=> I là một điểm cố định đi chuyển trên đường cao từ A xuống BC và khoảng cách từ I xuống BC bằng h+1/2.BC.
Viết dưới dạng phân số nha
\(\frac{5^{2011}+5^{2012}}{5^{2010}}=\frac{5^{2010}\left(5+5^2\right)}{5^{2010}}=5+5^2=5+25=30\)