Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt biểu thức đó là X
ta có :
\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3X-X=1-\frac{1}{729}\)
\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
Ta có :C= 2181-729+243.81-27
=2052+19683-27
C=21108
D=\(3^2.9^2.243+18.243.324.243\)
=9.81.243+18.243.324.243
=177147+344373768
=344550915
Ta có : C:D=21108:344550915=0,00006
T = 5.5 + 6.6 + .... + 30.30
T = 5.(6 - 1) + 6.(7-1) + ... + 30.(31 - 1)
T = 5.6 - 5 + 6.7 - 6 + ... + 30.31 - 30
T = (5.6 + 6.7 + ... + 30.31) - (5 + 6 + ... + 30)
Đặt A = 5.6+ 6.7 + ... + 30.31
B = 5 + 6 + ... + 30
Ta có :
3A = 5.6.3 + 6.7.3 + ... + 30.31 . 3
3A = 5.6.(7-4) + 6.7.(8-5) + ... + 30.31.(32-29)
3A = 5.6.7 - 4.5.6 + 6.7.8 - 5.6.7 + ... + 30.31.32 - 29.30.31
3A = (5.6.7 + 6.7.8 + ... + 30.31.32) - (4.5.6 + 5.6.7 + ... + 29.30.31)
3A = 30.31.32 - 4.5.6
3A = 29640
A = 29640 : 3
A = 9880
SSH của B là : (30 - 5) : 1 + 1 = 26 (số hạng)
Tổng B là : (30 + 5) . 26 : 2 =455
=> T = A - B = 9880 - 455 = 9425
c, S = 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 + 6561
S = (3 + 2187) + (9 + 6561) + (27 + 243) + (81 + 729) + 1
S = 2190 + 6570 + 270 + 810 + 1
S = (2190 + 810) + 6570 + 270 + 1
S = 3000 + 6570 + 270 + 1
S = 9570 + 270 + 1
S = 9840 + 1
S = 9841
Vậy S = 9841
\(\text{Đ}\text{ặt}:A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=3-\frac{1}{729}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2=\frac{1093}{729}\)
\(=\dfrac{3\cdot7\cdot3^4\cdot3^6+3^6\cdot3^4\cdot3^3}{3^2\cdot3^4\cdot2\cdot3^{12}\cdot13+3^2\cdot2\cdot3^3\cdot2\cdot3^4\cdot2\cdot3^2+723\cdot729}\)
\(=\dfrac{3^{11}\cdot7+3^{13}}{3^{18}\cdot26+3^{11}\cdot8+3^7\cdot241}\)
\(=\dfrac{3^{11}\left(7+9\right)}{3^7\left(3^{11}\cdot26+3^4\cdot8+241\right)}=\dfrac{3^7\cdot16}{17\cdot101\cdot2683}\)
$A = 1 + 3 + 3^2 + 3^3 + ... + 3^7$
$⇔3A = 3^1 + 3^2 + 3^4 + ... + 3^8$
$⇔3A - A = (3^1 + 3^2 + 3^4 + ... + 3^8) - (1 + 3 + 3^2 + 3^3 + ... + 3^7)$
$⇔2A = 3^8 - 1$
$⇔A = \dfrac{3^8 - 1}{2}$
Đặt A = 1+3+9+...+2187
=> A = 1+3+32+...+37
=> 3A = 3+32+33+...+38
=> 3A-A = (3+32+33+...+38)-(1+3+32+...+37)
=> 2A = 38-1
=> A = \(\dfrac{3^8-1}{2}\)
=> A =