
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(N=\left(2^2+4^2+6^2+...+100^2\right)\left(1^2+3^2+5^2+...+99^2\right)\)
\(N=\left(\frac{100\left(100+1\right)\left(2.100+1\right)}{6}\right)\left(\frac{99\left(2.99-1\right)\left(2.99+1\right)}{3}\right)\)
\(N=338350.1293699=.....\)
\(N=\left(2^2+4^2+....+100^2\right)-\left(1^2+3^2+...+99^2\right)\)
\(=2^2+4^2+6^2+.....+100^2-1^2-3^2-.....-99^2\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+......+\left(100-99\right)\left(100+99\right)\)
\(=3+7+....+199\)
\(=3+7+....+197+2\)
\(=4765+2=4767\)

đặt A = (cái trên )
2A=1+2^2+...+2^101
-
A=1+2+....+2^100
------------------------------
A= 2^101 - 1
B = 5+5^2+......+5^99
5B=5^2+5^3+....+5^100
-
B = 5+5^2+......+5^99
-----------------------------------
4B= 5^100-5
B=(5^100 - 5)/4
học tốt nha
tổng quát cho bạn luôn
A=n+n^2 + ....+ n^n
nA= n^2 + n^3 +....+n^(n+1)
-
A=n+n^2 + ....+ n^n
------------------------------------------
(n-1)A = n^(n+1) - n
A= (n^(n+1) - n) / (n-1)
ok
tuy nhiên một vài trường hợp(như câu B) thôi nha còn lại cũng na ná như thế

A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây

Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
Ta có: \(2A=2+2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)\)\(-\left(1+2+2^2+...+2^{100}\right)=\)\(2-2^{101}\)
1) Đặt A = 1 + 2 + 22 + 23 + ... + 2100 + 2101
2A = 2 + 22 + 23 + 24 + ... + 2101 + 2102
2A - A = (2 + 22 + 23 + 24 + ... + 2101 + 2102) - (1 + 2 + 22 + 23 + ... + 2100 + 2101)
A = 2102 - 1
2) Lm tương tự câu a, có j thắc mắc cứ hỏi

Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100

\(A=1^2+3^2+5^2+7^2+...+99^2\)
\(A=1+2^2+3^2+4^2+5^2+...+99^2\)
\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+.....+99.\left(100-1\right)\)
\(A=\left(2.3+3.4+.....+99.100\right)-\left(1+2+3+....+99\right)\)
\(A=\frac{99.100.101}{3}-\frac{99.\left(99+1\right)}{2}=333300-4950=328350\)
mình k hiểu sao lúc đầu A chỉ là bình phương của các số lẻ sau đó lại có thêm bình phương của số chan vào

Ta có:
Tích của M và N là:
Tử: 1*2*3*4*5*............*99*100(Tích của tử M và N)
Mẫu: 2*3*4*5*6*......*100*101(Tích của mẫu M và N)
Rút gọn cho nhau ta được:
1/101
Vậy M*N=1/101

ta có 1-2=-1, 3-4=-1...mà ta có 50 cặp như thế nên
A=1-2+3-4+...+99-100
= (-1).50
=-50
1 + 2 + 3 + 4 + 5 + ... + 99
= (1 + 99) x 99 : 2
= 100 x 99 : 2
= 9900 : 2
= 4950
số chữ số từ 1 đến 99 có là
(99-1):1+1=98
1+2+3+.....+99
99+98+97+....+1
giá trị 1 cặp là:
99+1=100
số cặp có là:
98:2=46
1+2+3+4+...+99=100x46=4600
ai k mh h lại