Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn ơi, mình làm đc rồi nên các bạn ko cần giúp mình nữa đâu mà giúp các bạn khác đi nha!!
Chúc các bạn thành công, may mắn và vui vẻ!!!
\(a)\) \(E=\frac{2016^3-1}{2016^2+2017}\)
\(E=\frac{\left(2016-1\right)\left(2016^2+2016.1+1^2\right)}{2016^2+2017}\)
\(E=\frac{2015\left(2016^2+2017\right)}{2016^2+2017}\)
\(E=2015\)
Chúc bạn học tốt ~
e làm cho vuj thôi chứ ko có hứng để trình bày vs lại tính
ta có : \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-1^2\right)-\left(99^2-2^2\right)+\left(98^2-3^2\right)-...+\left(52^2-49^2\right)-\left(51^2-50^2\right)\)
\(=101\left(100-1\right)-101\left(99-2\right)+101\left(98-3\right)-...+101\left(52-49\right)-101\left(51-50\right)\)
\(=101.99-101.97+101.95-...+101.3-101.1\)
\(=101\left(99-97+95-93+...+3-1\right)\)
\(=101.\left(2+2+2+...+2\right)=101.2.25=5050\)
a) Ta có:
\(A\left(x\right)=x^3-30x^2-31x+1\)
\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)
\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)
\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)
\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)
+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:
\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)
\(A\left(x\right)=0.992+1\)
\(A\left(x\right)=0+1\)
\(A\left(x\right)=1.\)
Vậy giá trị của biểu thức \(A\left(x\right)\) là \(1\) tại \(x=31.\)
Bài 1:
a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)
b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(18^8-\left(18^8-1\right)=1\)
\(c,100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)
áp dụng công thức Gauss ta đc đáp án là:10100
d, mk khỏi ghi đề dài dòng:
\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:
\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)
\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)
\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)
1c,
\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)
Bài 1: Rút gọn
a) Ta có: \(A=\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
\(=2x+15\)
b) Ta có: \(B=\left(2x-1\right)^2+2\left(2x-1\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(2x-1+x+1\right)^2\)
\(=\left(3x\right)^2=9x^2\)
Bài 2: Tính nhanh
a) Ta có: \(A=138^2+124\cdot138+62^2\)
\(=138^2+2\cdot138\cdot62+62^2\)
\(=\left(138+62\right)^2\)
\(=200^2=40000\)
b) Ta có: \(B=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+3^2+1^2\right)\)
\(=100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+..+2+1\)
\(=5050\)
Bài 3: Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến
a) Ta có: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{75}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{75}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\forall x\)
hay \(x^2-5x+10>0\forall x\)(đpcm)
b) Ta có: \(\left(x-1\right)\left(x-2\right)+5\)
\(=x^2-3x+2+5\)
\(=x^2-3x+7\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{19}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
hay \(\left(x-1\right)\left(x-2\right)+5>0\forall x\)(đpcm)
Dễ thấy P(x) là đa thức bậc 2 nên có dạng: \(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow P\left(x^2-1\right)=a\left(x^2-1\right)^2+b\left(x^2-1\right)+c\)
\(=ax^4+\left(b-2a\right)x^2+a-b+c=x^4-3x^2+3\)
Đồng nhất hệ số: \(a=1;b-2a=-3;a-b+c=3\Rightarrow a=1;b=-1;c=1\)
Vậy: \(P\left(x\right)=x^2-x+1\)
P/s; Lâu rồi không làm nên ko rõ cách trình bày=>hướng dẫn sương sương thôi nhé!:))
cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath
a, =(x+2)*(y+2*x)
= (88+2)(y+2.-76)
= 90*y-6660
b, = (x-7)*(y+x)
\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)
= 3/5 . 10
=6
k cho tớ nha :))))))
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)
=1+2+3+...+99+100
=5050