\(-1^2+2^2-3^2+4^2-.........-99^2+100^2\)

Nhanh lên nha mọi ngư...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)

=1+2+3+...+99+100

=5050

9 tháng 7 2018

Các bạn tập trung vào câu a cho mình nhé!

9 tháng 7 2018

Các bạn ơi, mình làm đc rồi nên các bạn ko cần giúp mình nữa đâu mà giúp các bạn khác đi nha!!

Chúc các bạn thành công, may mắn và vui vẻ!!!

9 tháng 7 2018

\(a)\) \(E=\frac{2016^3-1}{2016^2+2017}\)

\(E=\frac{\left(2016-1\right)\left(2016^2+2016.1+1^2\right)}{2016^2+2017}\)

\(E=\frac{2015\left(2016^2+2017\right)}{2016^2+2017}\)

\(E=2015\)

Chúc bạn học tốt ~ 

9 tháng 7 2018

Các bạn tập trung vào câu a cho mình nhé!

4 tháng 8 2016

M=(12+22+32)(22+32+42)......(982+992+1002)

4 tháng 8 2016

e làm cho vuj thôi chứ ko có hứng để trình bày vs lại tính

3 tháng 9 2018

ta có : \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-1^2\right)-\left(99^2-2^2\right)+\left(98^2-3^2\right)-...+\left(52^2-49^2\right)-\left(51^2-50^2\right)\)

\(=101\left(100-1\right)-101\left(99-2\right)+101\left(98-3\right)-...+101\left(52-49\right)-101\left(51-50\right)\)

\(=101.99-101.97+101.95-...+101.3-101.1\)

\(=101\left(99-97+95-93+...+3-1\right)\)

\(=101.\left(2+2+2+...+2\right)=101.2.25=5050\)

3 tháng 9 2018

Mình có cách khác nha !

\(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(97-97\right)+...\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\dfrac{100.101}{2}=5050\)

19 tháng 8 2020

a) Ta có:

\(A\left(x\right)=x^3-30x^2-31x+1\)

\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)

\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)

\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)

\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)

+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:

\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)

\(A\left(x\right)=0.992+1\)

\(A\left(x\right)=0+1\)

\(A\left(x\right)=1.\)

Vậy giá trị của biểu thức \(A\left(x\right)\)\(1\) tại \(x=31.\)

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

Bài 1: Rút gọn

a) Ta có: \(A=\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

\(=2x+15\)

b) Ta có: \(B=\left(2x-1\right)^2+2\left(2x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(2x-1+x+1\right)^2\)

\(=\left(3x\right)^2=9x^2\)

Bài 2: Tính nhanh

a) Ta có: \(A=138^2+124\cdot138+62^2\)

\(=138^2+2\cdot138\cdot62+62^2\)

\(=\left(138+62\right)^2\)

\(=200^2=40000\)

b) Ta có: \(B=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+3^2+1^2\right)\)

\(=100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+..+2+1\)

\(=5050\)

Bài 3: Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến

a) Ta có: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{75}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{75}{4}\)

Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\forall x\)

hay \(x^2-5x+10>0\forall x\)(đpcm)

b) Ta có: \(\left(x-1\right)\left(x-2\right)+5\)

\(=x^2-3x+2+5\)

\(=x^2-3x+7\)

\(=x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{19}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

hay \(\left(x-1\right)\left(x-2\right)+5>0\forall x\)(đpcm)

21 tháng 9 2020

cảm ơn bạn nhiều lắm !

9 tháng 1 2020

Dễ thấy P(x) là đa thức bậc 2 nên có dạng: \(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow P\left(x^2-1\right)=a\left(x^2-1\right)^2+b\left(x^2-1\right)+c\)

\(=ax^4+\left(b-2a\right)x^2+a-b+c=x^4-3x^2+3\)

Đồng nhất hệ số: \(a=1;b-2a=-3;a-b+c=3\Rightarrow a=1;b=-1;c=1\)

Vậy: \(P\left(x\right)=x^2-x+1\)

P/s; Lâu rồi không làm nên ko rõ cách trình bày=>hướng dẫn sương sương thôi nhé!:))

19 tháng 7 2016

cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath

19 tháng 7 2016

a, =(x+2)*(y+2*x)

= (88+2)(y+2.-76)

= 90*y-6660

b, = (x-7)*(y+x)

\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)

= 3/5 . 10

=6

k cho tớ nha :))))))