Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\times1280\)
= \(\frac{1}{2}\times1280+\frac{1}{4}\times1280+\frac{1}{8}\times1280+\frac{1}{16}\times1280+\frac{1}{32}\times1280+\frac{1}{64}\times1280\)\(+\frac{1}{128}\times1280\)
= 640 + 320 + 160 + 80 + 40 + 20 + 10
= ( 640 + 160 ) + ( 320 + 80 ) + ( 40 + 20 + 10 )
= 800 + 400 + 70
= 1270
a) \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{99.101}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)+\left(\frac{1}{2.4}+...+\frac{1}{98.100}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=2.\left(1-\frac{1}{101}\right)+2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=2\cdot\frac{100}{101}+2\cdot\frac{49}{100}=\frac{200}{101}+\frac{49}{50}\)
câu b mk ko bk! xl bn nha!
mk nhầm
...
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\) 1/100)
= 1/2.(1-1/101) + 1/2.(1/2-1/100)
=1/2.100/101 + 1/2.49/100
= 50/101 + 49/200
\(F=1\dfrac{1}{5}\times1\dfrac{1}{6}\times1\dfrac{1}{7}\times\cdot\cdot\cdot\times1\dfrac{1}{2019}\times1\dfrac{1}{2020}\)
\(F=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times\cdot\cdot\cdot\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(F=\dfrac{6\times7\times8\times\cdot\cdot\cdot\times2020\times2021}{5\times6\times7\times\cdot\cdot\cdot\times2019\times2020}\)
\(F=\dfrac{2021}{5}\)
\(Huyền\) |
\(f=1^1_5\times1^1_6\times1^1_7\times......\times1^1_{2019}\times1^1_{2022}\)
\(f=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times....\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(f=\dfrac{6\times7\times8\times....\times2020\times2021}{5\times6\times7\times.....\times2019\times2020}\)
\(f=\dfrac{2021}{5}\)
\(#Tarus\)
Ok em, để olm.vn giúp em nhá:
A = \(\dfrac{1}{2}\):3 + \(\dfrac{1}{3}\):4 + \(\dfrac{1}{4}\):5+...+\(\dfrac{1}{2018}\):2019 + \(\dfrac{1}{2019}\): 2020
A=\(\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+\dfrac{1}{4}\times\dfrac{1}{5}+..+\dfrac{1}{2018}\times\dfrac{1}{2019}+\dfrac{1}{2019}\times\dfrac{1}{2020}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+....+ \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\)+ \(\dfrac{1}{2019}\) - \(\dfrac{1}{2020}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2020}\)
A = \(\dfrac{1009}{2020}\)
Trả lời
A=(1-1/2)(1-1/4)(1-1/5).....(1-1/2018)(1-1/2019)
=1/2.3/4.4/5......2017/2018.2018/2019
=1/2.1/2019
=1/4038.
Nhưng theo mk nghĩ đề phải như thế này>
A=(1-1/3)(1-1/4)(1-1/5)........(1-2018)(1-2019)
=2/3.3/4.4/5......2017/2018.2018/2019
=2/2019.
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2018}\right)\left(\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.....\frac{2017}{2018}.\frac{1}{2019}=\frac{1}{2}.\frac{3}{2018}.\frac{1}{2019}=\frac{1}{2716228}\)
Vậy\(A=\frac{1}{2716228}\)
a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\cdot\cdot\cdot\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\cdot\cdot\cdot\times\frac{2018}{2019}\)
\(=\frac{1\times2\times\cdot\cdot\cdot\times2018}{2\times3\times\cdot\cdot\cdot\times2019}\)
\(=\frac{1}{2019}\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot.....\cdot\left(1-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}.........\cdot\frac{2018}{2019}\)
\(A=\frac{1.3}{2.2019}\)
\(A=\frac{3}{2.2019}=\frac{1}{2.673}=\frac{1}{1346}\)
_Vi hạ_