Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(a=2.\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{..1}{256}\)
\(A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(2A-A=1+\frac{1}{2}+\frac{1}{4}+\frac{....1}{128}-\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)\(+...+\frac{1}{256}\)
\(A=1-\frac{1}{256}\)\(A=\frac{255}{256}\)
Mẫu số chung là 256.
1/2=128/256 ; 1/4=64/256 ; 1/8=32/256 ; 1/16=6/256 ; 1/32=8/256 ; 1/64=4/256 ; 1/128=2/256 .1/256 giữ nguyên .
a=128+64+32+6+8+4+2+1/256
a=245/256
Tính \(S=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
Dùng sai phân như sau
\(2S-S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)=1-\frac{1}{256}\)
Vậy \(S=1-\frac{1}{256}\)
ta có : A=1/2+1/4+..+1/1024
=> A=1/21+1/22+..+1/210
=> A.2=(1/21+1/22+..+1/210).2
=> A.2=1+1/21+1/22+..+1/29
=> 2A-A=(1+1/21+1/22+..+1/29)-(1/21+1/22+..+1/210)
=> A=1-1/210
Ta có : \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{2}{8}=\frac{256}{256}-\frac{1}{256}=\frac{255}{256}\)
câu trả lời của mink là
1023/1024