Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5}{13}\left(\dfrac{6}{29}-\dfrac{26}{39}\right)-\dfrac{6}{29}\cdot\left(\dfrac{5}{13}-\dfrac{29}{6}\right)\)
\(=\dfrac{5}{13}\cdot\dfrac{6}{29}-\dfrac{5}{13}\cdot\dfrac{26}{39}-\dfrac{6}{13}\cdot\dfrac{5}{13}+\dfrac{6}{29}\cdot\dfrac{29}{6}\)
\(=\dfrac{-5}{39}\cdot2+1=1-\dfrac{10}{39}=\dfrac{29}{39}\)
b: \(\dfrac{1\cdot198+2\cdot197+3\cdot196+...+198\cdot1}{1\cdot2+2\cdot3+...+198\cdot199}\)
\(=\dfrac{1\left(199-1\right)+2\left(199-2\right)+...+198\cdot\left(199-198\right)}{1\left(1+1\right)+2\left(1+2\right)+...+198\left(1+198\right)}\)
\(=\dfrac{199\left(1+2+...+198\right)-\left(1^2+2^2+...+198^2\right)}{\left(1+2+...+198\right)+\left(1^2+2^2+...+198^2\right)}\)
\(=\dfrac{199\cdot\dfrac{198\cdot199}{2}-\dfrac{198\cdot\left(198+1\right)\cdot\left(2\cdot198+1\right)}{6}}{198\cdot\dfrac{199}{2}+\dfrac{198\left(198+1\right)\left(2\cdot198+1\right)}{6}}\)
\(=\dfrac{3\cdot198\cdot199^2-198\cdot199\cdot397}{6}:\dfrac{3\cdot198\cdot199+198\cdot199\cdot397}{6}\)
\(=\dfrac{198\cdot199\left(3\cdot199-397\right)}{198\cdot199\left(3+397\right)}\)
\(=\dfrac{200}{400}=\dfrac{1}{2}\)
`1//([-1]/2)^2 . |+8|-(-1/2)^3:|-1/16|=1/4 .8+1/8 .16=2+2=4`
`2//|-0,25|-(-3/2)^2:1/4+3/4 .2017^0=0,25-2,25.4+0,75.1=0,25-9+0,75=-8,75+0,75-8`
`3//|2/3-5/6|.(3,6:2 2/5)^3=|-1/6|.(3/2)^3=1/6 . 27/8=9/16`
`4//|(-0,5)^2+7/2|.10-(29/30-7/15):(-2017/2018)^0=|1/4+7/2|.10-1/2:1=|15/4|.10-1/2=15/4 .10-1/2=75/2-1/2=37`
`5// 8/3+(3-1/2)^2-|[-7]/3|=8/3+(5/2)^2-7/3=8/3+25/4-7/3=107/12-7/3=79/12`
1) Ta có
\(C=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2022}\right)\)
\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2021}{2022}\)
\(C=\dfrac{1}{2022}\)
2) \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow4A=A+3A\) \(=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow12A=3.4A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow16A=12A+4A=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
\(=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\) \(< 3\). Từ đó suy ra \(A< \dfrac{3}{16}\)
Ta có: \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{10^2}\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot\dfrac{-15}{16}\cdot...\cdot\dfrac{-99}{100}\)
\(=-\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
\(=-\dfrac{10+1}{2\cdot10}=\dfrac{-11}{20}\)
Phải thế này nha bạn!
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{10^2}\right)\)
\(=\dfrac{2^2-1^2}{2^2}.\dfrac{3^2-1^2}{3^2}.\dfrac{4^2-1^2}{4^2}...\dfrac{10^2-1^2}{10^2}\)
\(=\dfrac{\left(2+1\right)\left(2-1\right)}{2.2}.\dfrac{\left(3+1\right)\left(3-1\right)}{3.3}.\dfrac{\left(4+1\right)\left(4-1\right)}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)
\(=\dfrac{\left[1.2.3...\left(10+1\right)\right]\left[3.4.5...\left(10-1\right)\right]}{\left(2.3.4...10\right)\left(2.3.4...10\right)}\)
\(=\left(10+1\right).\dfrac{1}{2.10}\)
\(=\dfrac{11}{20}\)
Theo mình nghĩ phải như thế này.
ta có: n2 - 1 = (n2 - n) + (n -1) = n(n-1) + (n-1) = (n-1).(n+1) ; n \(\in\) N
Áp dụng công thức tổng quát trên ta có:
A = (\(\dfrac{1}{2^2}\) - 1).(\(\dfrac{1}{3^2}\) - 1)...(\(\dfrac{1}{100^2}\) - 1)
A = \(\dfrac{2^2-1}{-2^2}\). \(\dfrac{3^2-1}{-3^2}\)......\(\dfrac{100^2-1}{-100^2}\)
A = \(\dfrac{\left(2-1\right)\left(2+1\right)}{-2^2}\).\(\dfrac{\left(3-1\right).\left(3+1\right)}{-3^2}\).....\(\dfrac{\left(100-1\right).\left(100+1\right)}{-100^2}\)
A = - \(\dfrac{1.3.2.4.3.5.......99.101}{2^2.3^2.4^2...100^2}\)
A = - \(\dfrac{101}{200}\)
M=1 nha bạn