K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(B=\frac{1}{1.2013}+\frac{1}{3.2011}+...+\frac{1}{3.2011}+\frac{1}{1.2013}\)

\(=\frac{1}{2014}\left(\frac{2014}{1.2013}+\frac{2014}{3.2011}+...+\frac{2014}{1.2013}\right)\)

\(=\frac{1}{2014}\left(\frac{1}{1.2013}+\frac{2013}{1.2013}+\frac{3}{3.2011}+\frac{2011}{3.2011}+...+\frac{2013}{2013.1}+\frac{1}{2013.1}\right)\)

\(=\frac{1}{2014}\left(1+\frac{1}{2013}+\frac{1}{3}+\frac{1}{2011}+...+\frac{1}{2013}+1\right)\)

\(=\frac{2}{2014}\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)\)

\(=\frac{1}{1007}\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2013}}{\frac{1}{1007}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2013}\right)}=\frac{1}{\frac{1}{1007}}=1007\)

19 tháng 3 2018

A:B=C

9 tháng 3 2017

999/1000

9 tháng 3 2017

1/1.2+1/2.3+1/3.4+1/4.5+.................+1/9990999.9991000

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.................+1/9990999-1/9991000

=1-1/9991000

=9990999/9991000

9 tháng 3 2017

chế vừa thôi cụ

3 tháng 2 2017

kobiet

11 tháng 6 2020

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}=\frac{1.2.3...999}{2.3.4...1000}=\frac{1}{1000}\)

\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{2499}{2500}=\frac{3.8.15...2499}{4.9.16....2500}=\frac{1.3.2.4.3.5....49.51}{2.2.3.3.4.4...50.50}=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

\(\frac{1.51}{50.2}=\frac{51}{100}\)

11 tháng 6 2020

a. \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{999}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{998}{999}\)

\(A=\frac{1\cdot2\cdot3\cdot....\cdot998}{2\cdot3\cdot4\cdot....\cdot999}=\frac{1}{999}\)

Vậy \(A=\frac{1}{999}\)