Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đật \(B=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+....+\frac{1}{99\cdot100}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Giải thích tí nha :
Ở trên ấy đang là phép tính a-b
Để a-b biến đổi mà vẵn giữ nguyên thì làm như vầy :
a - b = ( a +b ) - (b + b ) = a +b -2b
Tiếp nè :))
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Leftrightarrow C=1\)
Bài làm:
Dạ thưa đề B bạn viết sai rồi ạ!
Ta có: \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{100}+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{2}{2}+\frac{2}{4}+\frac{2}{6}+...+\frac{2}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=A\)
\(A\div B=1\)
=> đpcm
Học tốt!!!!
= 1 -1/2 + 1/2 - 1/3 +......+1/99 - 1/100
= 1 -1/100
= 99/100
***Ai k mk mk k lại !!***
1/1*2+1/2*3+1/3*4+...+1/99*100
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)
=1-1/100
=99/100
Ta có: 1/1.2 = 1/1 - 1/2 ; 1/2.3 = 1/2 - 1/3 ; 1/3.4 = 1/3 - 1/4 ; ...;1/99.100 = 1/99 - 1/100
Như vậy thì bài toán trên = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/99 - 1/100
Vậy tổng trên là:
1 - 1/100
= 99/100
1/ tap hop A co 99 phan tu {-1;-2;-3;......;-99}
2/ S=333300
\(P=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(P=1-\frac{1}{100}\)
\(P=\frac{99}{100}\)
P = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4+ 1/4 - 1/5 + ............. + 1/99 - 1/100
= 1/1 - 1/100
= 99/100