Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2 + 2.3 + 3.4 + ...+ 59.60
3A = 1.2.3 + 2.3.3 + 3.4.3 + ...+ 59.60.3
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) +...+ 59.60.(61-58)
3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 59.60.61 - 58.59.60
3A = 58.59.60 => A = 58.59.60 : 3 = 68 440
B = 12 + 22 + 32 + 592
B = 1.2 + 2.2 + 3.3 + 59.59
B = 2 + 4 + 9 + 3481
B = 3496
vậy A - B = 68 440 - 3 496 = 64 944
( bấm nhé )
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)
ta có :
\(a-b=1.2+\left(2.3-2^2\right)+\left(3.4-3^2\right)+..+\left(98.99-98^2\right)\)
\(=2+2+3+4+..+98\)
\(=1+\left(1+2+3+..+98\right)=1+98\times\frac{99}{2}=4852\)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
a-b=(1.2+2.3+3.4+4.5+...+98.99)-(12+22+32+...+982)
1.2+2.3+3.4+4.5+...+98.99-12-22-32-...-982
=1(2-1)+2(3-2)+...+98(99-98)
=1+2+...+98
Đến đây bạn tự tính
Lời giải:
$A=1(1+1)+2(2+1)+3(3+1)+....+98(98+1)$
$=(1.1+2.2+3.3+...+98.98)+(1+2+3+...+98)$
$=B+(1+2+3+...+98)$
$\Rightarrow A-B=1+2+3+...+98=98.99:2=4851$
a) Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32
A = 1/2 + 1/22 + 1/23 + 1/24 + 1/25
2A = 2(1/2 + 22 + 1/23 + 1/24 + 1/25)
2A = 1 + 1/2 + 1/22 + 1/23 + 1/24
2A - A = (1 + 1/2 + 1/22 + 1/23 + 1/24) - (1/2 + 1/22 + 1/23 + 1/24 + 1/25)
A = 1 - 1/25
A = 31/32
b) 2/1.2 + 2/2.3 + 2/3.4 + ... + 2/18 . 19 + 2/19.20
= 2(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/18.19 + 1/19.20)
= 2.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/18 - 1/19 + 1/19 - 1/20)
= 2. (1 - 1/20)
= 2.19/20
= 19/10
k mik nha ae
mk làm rồi nhưng lại quên xin lỗi bạn