Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{A}+\sqrt{B}\right)^2\)\(=A+B+2\sqrt{AB}\)
\(\left(\sqrt{A}-\sqrt{B}\right)^2\)\(=A-B+2\sqrt{AB}\)
Bài 1:
a) Ta có: \(\sqrt{\left(23-15\sqrt{3}\right)^2}\)
\(=\left|23-15\sqrt{3}\right|\)
\(=\left|\sqrt{529}-\sqrt{675}\right|\)
\(=\sqrt{675}-\sqrt{529}\)
\(=15\sqrt{3}-23\)
b) Ta có: \(\sqrt{\left(2-2\sqrt{3}\right)^2}\)
\(=\left|2-2\sqrt{3}\right|\)
\(=2\sqrt{3}-2\)
c) Ta có: \(\sqrt{\left(15-4\sqrt{3}\right)^2}\)
\(=\left|15-4\sqrt{3}\right|\)
\(=15-4\sqrt{3}\)
d) Ta có: \(\sqrt{\left(16-6\sqrt{7}\right)^2}\)
\(=\left|16-6\sqrt{7}\right|\)
\(=\left|\sqrt{256}-\sqrt{252}\right|\)
\(=16-6\sqrt{7}\)
f) Ta có: \(\sqrt{\left(22-8\sqrt{3}\right)^2}\)
\(=\left|22-8\sqrt{3}\right|\)
\(=\left|\sqrt{484}-\sqrt{192}\right|\)
\(=22-8\sqrt{3}\)
g) Ta có: \(\sqrt{\left(9-4\sqrt{2}\right)^2}\)
\(=\left|9-4\sqrt{2}\right|\)
\(=9-4\sqrt{2}\)
h) Ta có: \(\sqrt{\left(13-4\sqrt{3}\right)^2}\)
\(=\left|13-4\sqrt{3}\right|\)
\(=13-4\sqrt{3}\)
i) Ta có: \(\sqrt{\left(7-3\sqrt{3}\right)^2}\)
\(=\left|7-3\sqrt{3}\right|\)
\(=7-3\sqrt{3}\)
B1:
1. \(\sqrt{12.5}\cdot\sqrt{0.2}\cdot\sqrt{0.1}\) \(=\sqrt{12.5\cdot0.2\cdot0.1}\) \(=\sqrt{0.25}=0.5\)
2.\(\sqrt{48.4}\cdot\sqrt{5}\cdot\sqrt{0.5}\) = \(\sqrt{48.4\cdot5\cdot0.5}\) =\(\sqrt{121}=11\)
B2:
a, \(\left(\sqrt{7}+\sqrt{3}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{3}+3=7+2\cdot\sqrt{21}+3\)\(=10+2\sqrt{21}\)
b,\(\left(\sqrt{11}-\sqrt{5}\right)^2=11-2\sqrt{55}+5=16-2\sqrt{55}\)
c,\(\left(\sqrt{x}+\sqrt{y}\right) ^2=x+2\sqrt{xy}+y\)
d.\(\left(\sqrt{13}+\sqrt{7}\right)^2=13+2\sqrt{7}+7=20+2\sqrt{7}\)
e,\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\)
f,\(\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\)
a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)
\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)
\(=4\sqrt{10}+4\sqrt{2}\)
c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)
\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)
\(=5\sqrt{7}\)
d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)
\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)
\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)
\(=\dfrac{1+12\sqrt{2}}{4}\)
e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)
\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)
f) bạn xem đề lại nhé
a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))
=2(\(\sqrt{5}+5-\sqrt{5}-1\))
=2.4=8=VP
=> đpcm
b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)
=\(2\sqrt{2}-2\)
=2\(\left(\sqrt{2}-1\right)\)
=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)
vậy VT=VP =>đpcm
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
\(\left(\sqrt{A}+\sqrt{B}\right)^3=\left(\sqrt{A}\right)^3+3.A.\sqrt{B}+3.\sqrt{A}.B+\left(\sqrt{B}\right)^3\)
\(\left(\sqrt{A}-\sqrt{B}\right)^3=\left(\sqrt{A}\right)^3-3.A.\sqrt{B}+3.\sqrt{A}.B-\left(\sqrt{B}\right)^3\)
Toán lớp 9?????