\(x^2-2xy+2y^2+2x-10y+17\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=x^2-2xy+2y^2+2x-10y+17\)

\(=x^2-2xy+y^2+y^2+2x-2y-8y+1+16\)

\(=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\)

\(=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Ta có: \(\left(x-y+1\right)^2\ge0\forall x,y\)

\(\left(y-4\right)^2\ge0\forall y\)

Do đó: \(\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-2xy+2y^2+2x-10y+17\) là 0 khi x=3 và y=4

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

28 tháng 11 2017

\(A=x^2-2xy+2y^2+2x-10y+2033\\ =x^2-2xy+y^2+y^2+2x-8y-2y+1+16+2016\\ =\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+1+\left(y^2-8y+16\right)+2016\\ =\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\\ =\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-4\right)^2+2016\\ =\left(x-y+1\right)^2+\left(y-4\right)^2+2016\\ Do\text{ }\left(y-4\right)^2\ge0\forall y\\ \left(x-y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\\ \Rightarrow A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\forall x;y\\ Dấu\text{ }''=''\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(y-4\right)^2=0\\\left(x-y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x-4+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\\ Vậy\text{ }A_{\left(Min\right)}=2016\text{ }khi\text{ }\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

28 tháng 11 2017

xem lại đề

7 tháng 4 2018

A=2x2+y2-2xy-2x+3

= (x2-2xy+y2)+(x2-2x+1)+2

= (x-y)2+(x-1)2 +2

do (x-y)2 ≥ 0 ∀ x,y

(x-1)2 ≥ 0 ∀ x

=> (x-y)2+(x-1)2 +2 ≥ 2

=> A ≥ 2

nimA=2 dấu "=" xảy ra khi

x-y=0

x-1=0

=> x=y=1

vậy nimA =2 khi x=y=1

a: \(A=x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=3/2

c: \(x^2-x+2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\)

=>\(\dfrac{3}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}< =3:\dfrac{7}{4}=\dfrac{12}{7}\)

=>C>=-12/7

Dấu '=' xảy ra khi x=1/2

28 tháng 9 2018

\(G=x^2+2y^2-2xy+2x-10y\)

\(G=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-17\)

\(G=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)

Vậy GTNN của G là -17 khi x = 3; y = 4

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

a) \(A=x^2+2y^2-2xy+2x-10y\)

\(\Leftrightarrow A=(x-y+1)^2+(y-4)^2-17\)

Ta thấy \((x-y+1)^2; (y-4)^2\geq 0\Rightarrow A\geq -17\)

Vậy \(A_{\min}=-17\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y+1=0\\ y-4=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=4\end{matrix}\right.\)

b)

\(B=x^2+6y^2+14z^2-8yz+6xz-4xy\)

\(\Leftrightarrow B=(x-2y+3z)^2+2y^2+5z^2+4yz\)

\(\Leftrightarrow B=(x-2y+3z)^2+2(y+z)^2+z^2\)

Ta thấy \((x-2y+3z)^2; (y+z)^2; z^2\geq 0\forall x,y,z\in\mathbb{R}\)

\(\Rightarrow B\geq 0\Leftrightarrow B_{\min}=0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-2y+3z=0\\ y+z=0\\ z=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)