Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
1.Tìm GTLN:
a)-2x^2+4x-18
Ấn vào máy tính : mode 5 1
Rồi án hệ phương trình vào lặp 3 lần dấu =
kq = 1
b)-2x^2-12x+12
Ấn tương tự phần a
kq = -3
c)-2x^2+2xy-5y^2+4y+2x+1
Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12
= ( x - 1 ) 2 + ( 2y + 1 ) 2
+) ( x - 1 ) 2 = 0 +) ( 2y + 1 ) 2 = 0
x - 1 = 0 2y + 1 = 0
x = 1 y = \(-\frac{1}{2}\)
b)4x^2-8x+y+2y
Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
a: \(A=-x^2+4x+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left(x-2\right)^2+9\le9\)
Dấu '=' xảy ra khi x=2
b: \(B=-4x^2+12x-1\)
\(=-\left(4x^2-12x+1\right)\)
\(=-\left(4x^2-12x+9-8\right)\)
\(=-\left(2x-3\right)^2+8\le8\)
Dấu '=' xảy ra khi x=3/2