K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Giải:

Ta có tính chất tổng quát:

\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức

\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)

\(=1-\frac{1}{\sqrt{225}}\)

10 tháng 8 2023

2/ 

a) Ta có:

\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)

Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) Ta có:

\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)

\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)

Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)

10 tháng 8 2023

3/

a)ĐKXĐ: \(x\ne1;x\ge0\)

b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)

\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)

\(A=1^2-\left(\sqrt{x}\right)^2\)

\(A=1-x\)

1: ĐKXĐ: -2/2x-2>=0

=>2x-2<0

=>x<1

2: ĐKXĐ: 2/3x-1>=0

=>3x-1>0

=>x>1/3

3: ĐKXĐ: 2x-2/(-2)>=0

=>2x-2<=0

=>x<=1

4: ĐKXĐ: (3x-2)/5>=0

=>3x-2>=0

=>x>=2/3

5: ĐKXĐ: (x-2)/(x+3)>=0

=>x>=2 hoặc x<-3

8 tháng 9 2023

Các đơn thức là :

\(\left(1-\dfrac{1}{\sqrt[]{3}}\right)x^2;x^2.\dfrac{7}{2}\)

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn

 

\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+3\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{a-4}\)

\(=\dfrac{5a+15\sqrt{a}-3\sqrt{a}-9+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{a-4}\)

\(=\dfrac{-a^2+8a+5\sqrt{a}-19}{a-4}\)

Câu 1: 

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

=>n+1=3000

hay n=2999