Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
a: Thay y=0vào y=2x-3, ta được:
2x-3=0
=>x=1,5
Vì (d)//(d1) nên (d): y=1/2x+b
Thay x=1,5 và y=0 vào (d), ta được:
b+0,75=0
=>b=-0,75
b: Vì (d)//(d1) nên a=2/3
=>(d): y=2/3x+b
Giao điểm của hai đường y=2x+1 và y=3x-2 là:
3x-2=2x+1 và y=2x+1
=>x=3 và y=7
Thay x=3 và y=7 vào (d),ta được;
b+2=7
=>b=5
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
Lời giải:
PT (2) $\Leftrightarrow x+y+xy+1=0$
$\Leftrightarrow (x+1)(y+1)=0$
$\Rightarrow x+1=0$ hoặc y+1=0$
Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$
Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$
Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$
Từ đây ta suy ra:
A đúng.
B đúng
C sai
D đúng
Áp dụng công thức cos =
ta có cos =
=> cos = = = => = 450