Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có BC=a, CA=b, BA=c và diện tích là S. Biết \(S=b^2-\left(a-c\right)^2\). Tính tanB
Ta có:
\(S=b^2-\left(a-c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=a^2+c^2-2ac\cos B-a^2-c^2+2ac\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=2ac\left(1-c\text{os}B\right)\)
\(\Leftrightarrow\sin B=4\left(1-c\text{os}B\right)\Leftrightarrow c\text{os}B=1-\dfrac{1}{4}sinB\left(1\right)\)
Mặt \(\ne:sin^2B+c\text{os}^2B=1\)
\(\Leftrightarrow sin^2B+\left(1-\dfrac{1}{4}sinB\right)^2=1\)
\(\Leftrightarrow\dfrac{17}{16}sin^2B-\dfrac{1}{2}sinB=0\)
\(\Leftrightarrow sinB=\dfrac{8}{17}\left(sinB>0\right)\)
Kết hợp với (1) ta đc: \(c\text{os}B=\dfrac{15}{17}\Rightarrow tanB=\dfrac{8}{15}\)
a) \(\cos A=-\dfrac{3}{5}\Rightarrow\widehat{A}\approx126^052'\)
b) \(AB:2x+y-1=0;AC=2x-y-3=0\)
c) Phân giác trong \(AD\) có phương trình : \(y+1=0\)
a)Do A',B',C' là trung điểm BC,CA,AB=> A'B' song song với AB,B'C'song song với BC,C'A' song song với CA
\(\overrightarrow{A'B'}=\left(6;3\right)\) => VTPT của đường thẳng AB là: \(\overrightarrow{n}=\left(1;-2\right)\)
và C' thuộc (AB)=>Phương trình đường thẳng AB là:
(AB): x-2y-6=0
Tương tự ta có phương trình đường thẳng BC là:
(BC): x+4=0
Tọa độ điểm B là nghiệm hệ
\(\left\{{}\begin{matrix}\text{x-2y-6=0}\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-5\end{matrix}\right.\)
=>B(-4;-5)
A'(-4;1) là TĐ của BC => tọa độ C(-4;7)
C'(2;-2) là TĐ của AB =>tọa độ A(8;1)
b) Gọi tọa độ trọng tâm G của tam giác A'B'C' là G(x;y)
=>\(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=0\)
=>\(\left\{{}\begin{matrix}\left(-4-x\right)+\left(2-x\right)+\left(2-x\right)=0\\\left(1-y\right)+\left(4-y\right)+\left(-2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
=>G(0;1)
Thay vào tính
Ta có:\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\) =(8-4-4;1-1+7-1-5-1)=(0;0)
=>G là trọng tâm tam giác ABC=>ĐPCM
Trần Huy tâm: Nếu đề sửa như bạn nói thì làm ntn nha:
Theo bài ra ta có:
\(2(a^3+b^3+c^3)=a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\)
\(\Leftrightarrow 2(a^3+b^3+c^3)=ab(a+b)+bc(b+c)+ca(c+a)\)
\(\Leftrightarrow [a^3+b^3-ab(a+b)]+[b^3+c^3-bc(b+c)]+[c^3+a^3-ca(c+a)]=0\)
\(\Leftrightarrow [a^2(a-b)-b^2(a-b)]+[b^2(b-c)-c^2(b-c)]+[c^2(c-a)-a^2(c-a)]=0\)
\(\Leftrightarrow (a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)=0\)
Ta thấy với mọi $a,b,c$ là 3 cạnh tam giác thì $(a-b)^2(a+b); (b-c)^2(b+c); (c-a)^2(c+a)\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2(a+b)=(b-c)^2(b+c)=(c-a)^2(c+a)=0$
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$ (do $a+b,b+c,c+a\neq 0$)
$\Rightarrow a=b=c$
Hay tam giác $ABC$ đều. Ta có đpcm.
Bạn xem lại đề xem có thiếu điều kiện gì không? 2 vế trong ĐKĐB không cùng bậc nên nếu không có thêm đk gì thì làm sao chứng minh được tam giác đều?
a: \(\Leftrightarrow\dfrac{\left(b+c\right)^3-a^3-3bc\left(b+c\right)}{b+c-a}=a^2\)
\(\Leftrightarrow a^2=\left(b+c\right)^2+a\left(b+c\right)+a^2-\dfrac{3bc\left(b+c\right)}{b+c-a}\)
\(\Leftrightarrow\left(b+c\right)^2+a\left(b+c\right)-\dfrac{3bc\left(b+c\right)}{b+c-a}=0\)
\(\Leftrightarrow\left(b+c\right)\left(b+c-\dfrac{3bc}{b+c-a}+a\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(b+c-a\right)-3bc+a\left(b+c-a\right)=0\)
\(\Leftrightarrow b^2+2bc+c^2-ab-ac-3bc+ab+ac-a^2=0\)
\(\Leftrightarrow b^2+c^2-a^2-bc=0\)
\(\Leftrightarrow a^2=b^2+c^2-bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2\cdot b\cdot c}=\dfrac{1}{2}\)
nên góc A=30 độ
b: \(cosB=\dfrac{\left(a+b\right)\left(b+c-a\right)\left(c+a-b\right)}{2bac}\)
=>\(\dfrac{\left(a+b\right)\left[c-\left(a-b\right)\right]\left[c+\left(a-b\right)\right]}{2abc}=\dfrac{a^2+c^2-b^2}{2ac}\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\cdot\left[c^2-\left(a-b\right)^2\right]}{b}=a^2+c^2-b^2\)
\(\Leftrightarrow c^2\left(a+b\right)-\left(a+b\right)\left(a-b\right)^2=a^2b+c^2b-b^3\)
\(\Leftrightarrow ac^2+bc^2-\left(a^2-b^2\right)\left(a-b\right)=a^2b+c^2b-b^3\)
\(\Leftrightarrow ac^2+bc^2-a^3+a^2b+ab^2-b^3=a^2b+c^2b-b^3\)
\(\Leftrightarrow ac^2+bc^2-a^3+ab^2=c^2b\)
\(\Leftrightarrow ac^2+bc^2-a^3-ab^2-c^2b=0\)
\(\Leftrightarrow c^2\left(a+b\right)-a\left(a^2+b^2\right)-c^2b=0\)
=>c^2*a-a(a^2+b^2)=0
=>a(c^2-a^2-b^2)=0
=>c^2=a^2+b^2
=>góc A=90 độ
a/ Với mọi số thực ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:
\(a+b>c\Rightarrow ac+bc>c^2\)
\(a+c>b\Rightarrow ab+bc>b^2\)
\(b+c>a\Rightarrow ab+ac>a^2\)
Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
b/
Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương
Ta có:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)
Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
Nhân vế với vế:
\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)