Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\) +\(\frac{x-2}{\left(x-1\right).\left(x^2+x+1\right)}\)
A=\(\frac{2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{11.2-3}{\left(11-1\right)\left(11^2+11+1\right)}\)=\(\frac{19}{1330}\)
\(A=\frac{1}{x^2+x+1}+\frac{x-2}{x^3-1}\)
\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{2x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x-3}{x^3-1}\)
\(=\frac{2.11-3}{11^3-1}=\frac{19}{1330}=\frac{1}{70}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0;x\ne2\\x\ne-1\end{cases}}\)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(\Leftrightarrow Q=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(\Leftrightarrow Q=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{x\left(x-2\right)}{x^2-x+1}\)
\(\Leftrightarrow Q=1+\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2x^2+4x}{x\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow Q=1+\frac{-2}{x+1}\)
\(\Leftrightarrow Q=\frac{x-1}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(ktm\right)\\x=-\frac{1}{2}\left(tm\right)\end{cases}}\)
Thay \(x=-\frac{1}{2}\)vào Q, ta được :
\(Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}\)
\(\Leftrightarrow Q=\frac{-\frac{3}{2}}{\frac{1}{2}}\)
\(\Leftrightarrow Q=-3\)
c) Để \(Q\inℤ\)
\(\Leftrightarrow x-1⋮x+1\)
\(\Leftrightarrow x+1-2⋮x+1\)
\(\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)
\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:
\(|x-\frac{3}{4}|=\frac{5}{4}\)
*TH1:
\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)
*TH2:
\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
c,
\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)
Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!
a) \(ĐKXĐ:x\ne\pm2\)
\(D=\frac{3x}{x-2}+\frac{2}{x+2}-\frac{14x-4}{x^2-4}:\frac{x\left(x-1\right)}{x+2}\)
\(\Leftrightarrow D=\frac{3x^2+6x+2x-4-14x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{x\left(x-1\right)}\)
\(\Leftrightarrow D=\frac{3x^2-6x}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow D=\frac{3x\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow D=\frac{3}{x-1}\)
b) Khi \(\left|x-1\right|-3=0\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\1-x=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Thay \(x=4\)vào D ta được :\(D=\frac{3}{4-1}=1\)
c) Để D có giá trị nguyên
\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)
Loại bỏ giá trị \(x=\pm2\)không làm cho biểu thức có nghĩa
Vậy để D có giá trị nguyên \(\Leftrightarrow x\in\left\{0;4\right\}\)
Khi làm bài thì chỉnh lại giúp bạn cái đề:
\(D=\left(\frac{3X}{X-2}+\frac{2}{X+2}-\frac{14X-4}{X^2-4}\right):\frac{X\left(X-1\right)}{X+2}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)
\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{-1}{x+2}\)
b) Khi \(\left|x\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)
c) Để P = 7
\(\Leftrightarrow-\frac{1}{x+2}=7\)
\(\Leftrightarrow7\left(x+2\right)=-1\)
\(\Leftrightarrow7x+14=-1\)
\(\Leftrightarrow7x=-15\)
\(\Leftrightarrow x=-\frac{15}{7}\)
Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)
d) Để \(P\inℤ\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)
\(B=\frac{x+1}{x^2-x}+\frac{x+2}{1-x^2}\)
\(B=\frac{-x+1}{-x^4+x^3+x^2-x}\)
\(B=\frac{-x+1}{x\left(-x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(B=\frac{-1}{-x^3+x}\)
Thay \(x=-\frac{1}{3}\) vào biểu thức, ta có:
\(B=\frac{-1}{-\left(-\frac{1}{3}\right)^3+\left(-\frac{1}{3}\right)}=\frac{27}{8}\)
thank