K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Nên sửa -2x ở tử thành 2x. Giải như sau :

\(\frac{x^2+2x-1}{2x^2+4x+9}=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{4x^2+8x+18}=\frac{1}{2}-\frac{11}{4\left(x+1\right)^2+14}\)

Biểu thức đạt GTNN khi \(\frac{11}{4\left(x+1\right)^2+14}\)đạt GTLN hay 4(x + 1)2 + 14 đạt GTNN hay khi x = -1

Vậy GTNN của biểu thức là : \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\)khi x = -1

26 tháng 10 2016

1) \(x^2-4x+5=x^2-4x+2^2+1=\left(x^2-4x+2^2\right)+1=\left(x-2\right)^2+1\)

Ta có : (x-2)2 >=0

=> (x-2)2+1>=1

Min A= 1 khi x=2

2) \(-x^2-2x+5=-\left(x^2+2x+1^2\right)+6=-\left(x+1\right)^2+6\)

(x+1)2>=0

=> -(x+1)2<=0

=> A<= 6

Max A = 6 khi x=-1

26 tháng 10 2016

C1, x2 - 4x + 5

= ( x2 - 4x + 4 ) + 1

= ( x - 2 )2 + 1

=> (x -2)^2 + 1 lớn hơn hoặc bằng 1

=> x = 2

C2, -x2 - 2x + 5

= - (x2 - 2x - 1) - 4

= - (x - 1 ) 2 - 4

=> - (x - 1 ) 2 - 4 nhỏ hơn hoặc bằng 4

=> x = 1

C2 mình nghĩ vậy thôi chứ k chắc đâu

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

25 tháng 11 2021

\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)

25 tháng 11 2021

cảm ơn

 

11 tháng 6 2016

Hỏi đáp ToánHỏi đáp Toán

11 tháng 6 2016

Bn chờ tí , mk làm cho

11 tháng 7 2016

Cho x2_60x+900=0

Suy ra:x2_2.x.30+302=0

(x-30)2=0

suy ra x-30=0

vậy x=30

25 tháng 12 2020

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1