Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\left|2018-x\right|+\left|2019-x\right|\)
\(=\left|2018-x\right|+\left|x-2019\right|\)
Ta có :
\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)
=> \(F\ge\left|-1\right|\)
=> \(F\ge1\)
Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0
TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)
=> 2019 < x < 2018 ( vô lí - loại )
TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)
=> 2018 < x < 2019
Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019
\(=x^2-6x+2019\)
\(=\left(x-3\right)^2+2010\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2010\ge0+2010\forall x\)
hay \(C\left(x\right)\ge2010\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy Min C(x)=2010 \(\Leftrightarrow x=3\)
\(\left(x-3\right)\left(4x+5\right)+2019\)
\(=4x^2-7x-15+2019\)
\(=4x^2-7x+2004\)
\(=4\left(x^2-\frac{7}{4}x+501\right)\)
\(=4\left(x^2-\frac{7}{4}x+\frac{49}{64}+\frac{32015}{64}\right)\)
\(=4\left[\left(x-\frac{7}{8}\right)^2+\frac{32015}{64}\right]\)
\(=4\left[\left(x-\frac{7}{8}\right)^2\right]+\frac{32015}{16}\ge\frac{32015}{16}\)
Vậy GTNN của bt là \(\frac{32015}{16}\Leftrightarrow x-\frac{7}{8}=0\Leftrightarrow x=\frac{7}{8}\)
Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất
=> |x - 2019| + 2021 nhỏ nhất
Ta có: \(\left|x-2019\right|\ge0\)
\(\Rightarrow\left|x-2019\right|+2021\ge2021\)
Dấu "=" xảy ra khi x - 2019 = 0
=> x = 2019
\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)
Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
- Để P nhỏ nhất \(\Rightarrow\frac{2019}{\left|x-1\right|-3}\)nhỏ nhất
mà \(2019>0\)\(\Rightarrow\left|x-1\right|-3\)lớn nhất
- Đặt \(A=\left|x-1\right|-3\)
- Ta có: \(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|-3\ge-3\)
\(\Rightarrow A_{min}=-3\)
- Dấu "=" xảy ra \(\Leftrightarrow\left|x-1\right|=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
- Vậy \(A_{min}=-3\Leftrightarrow x=1\)
a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)
Vì \(\left|x-2019\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy Amin = 2018 <=> x = 2019
Ta có : |x - 2019| > 2019 - x
và |x - 1| > x - 1
=> P=|x - 2019| + |x - 1| > 2019 - x + x - 1 =2018
=> P > 2018
Dấu "=" xảy ra khi 1 < x < 2019
Vậy GTNN của P là 2018 khi 1 < x < 2019
học tốt
|x - 2019| + |x - 1|=|x-2019+1-x|=-2018
dấu ''='' xảy ra <=> \(\left(x-2019\right)\left(1-x\right)\ge0\)
=> \(\orbr{\begin{cases}\hept{\begin{cases}x-2019\ge0\\1-x\le0\end{cases}}\\\hept{\begin{cases}x-2019\le0\\1-x\ge0\end{cases}}\end{cases}}\)
đến đây dễ rồi!