K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

(x - 2)(3x + 1) = 0

x - 2 = 0 hoặc 3x + 1 = 0

*) x - 2 = 0

x = 0 + 2

x = 2 (nhận)

*) 3x + 1 = 0

3x = 0 - 1

3x = -1

x = -1/3 (loại)

Vậy x = 2

27 tháng 10 2023

(x-2)(3x+1)=0
TH1

x-2=0

x=2

TH2

3x+1=0

x=-1/3

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

26 tháng 2 2020

\(a,P=\frac{x+2}{x-2}+\frac{x}{x+2}-\frac{4}{x^2-4}\)

\(P=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)

\(P=\frac{x^2+4x+4+x^2-2x-4}{x^2-4}\)

\(P=\frac{2x^2+2x}{x^2-4}\)

\(P=\frac{2x^2+2x}{x^2-4}\)               (1)

\(b,x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)

thay vào (1) ta có : 

\(P=\frac{2\cdot3^2+2\cdot3}{3^2-4}=\frac{24}{5}\)

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

5 tháng 11 2016

Bài 1:

\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)

\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)

\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)

Bài 2:

\(P=\left|2-x\right|+2y^4+5\)

Ta thấy:

\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)

\(\Rightarrow\left|2-x\right|+2y^4\ge0\)

\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)

\(\Rightarrow P\ge5\)

Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)

Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)

 

5 tháng 11 2016

Bài 4:

2(2x+x2)-x2(x+2)+(x3-4x+13)

=2x2+4x-x3-2x2+x3-4x+13

=(2x2-2x2)+(4x-4x)-(-x3+x3)+13

=13

Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)

\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)

\(=2^{2023}-1\)

26 tháng 8 2023

\(3x^2+6y^2-12x-20y+40=0\)

\(\Rightarrow\left(3x^2-12x+12\right)+\left(6y^2-12y+6\right)+22=0\)

\(\Rightarrow3\left(x^2-4x+4\right)+6\left(y^2-2y+1\right)+22=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2+22=0\)

Ta thấy: \(3\left(x-2\right)^2\ge0\forall x\)

              \(6\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2+22>0\forall x;y\)

Mặt khác: \(3\left(x-2\right)^2+6\left(y-1\right)^2+22=0\)

Suy ra: Không có giá trị nào của x; y thoả mãn yêu cầu đề bài.

#Ayumu