Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\frac{x+2}{x-2}+\frac{x}{x+2}-\frac{4}{x^2-4}\)
\(P=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(P=\frac{x^2+4x+4+x^2-2x-4}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\) (1)
\(b,x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)
thay vào (1) ta có :
\(P=\frac{2\cdot3^2+2\cdot3}{3^2-4}=\frac{24}{5}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13
Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)
\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)
\(=2^{2023}-1\)
\(3x^2+6y^2-12x-20y+40=0\)
\(\Rightarrow\left(3x^2-12x+12\right)+\left(6y^2-12y+6\right)+22=0\)
\(\Rightarrow3\left(x^2-4x+4\right)+6\left(y^2-2y+1\right)+22=0\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2+22=0\)
Ta thấy: \(3\left(x-2\right)^2\ge0\forall x\)
\(6\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow3\left(x-2\right)^2+6\left(y-1\right)^2+22>0\forall x;y\)
Mặt khác: \(3\left(x-2\right)^2+6\left(y-1\right)^2+22=0\)
Suy ra: Không có giá trị nào của x; y thoả mãn yêu cầu đề bài.
#Ayumu
(x - 2)(3x + 1) = 0
x - 2 = 0 hoặc 3x + 1 = 0
*) x - 2 = 0
x = 0 + 2
x = 2 (nhận)
*) 3x + 1 = 0
3x = 0 - 1
3x = -1
x = -1/3 (loại)
Vậy x = 2
(x-2)(3x+1)=0
TH1
x-2=0
x=2
TH2
3x+1=0
x=-1/3