K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

Để 32x²y^m chia hết cho -5xy² thì m ≥ 2

31 tháng 7 2017

Ta thấy \(4x^2+17xy+9y^2=5xy-\left|y-2\right|\)

\(\Leftrightarrow4x^2+12xy+9y^2=-\left|y-2\right|\Leftrightarrow\left(2x+3y\right)^2=-\left|y-2\right|\)

Do \(\left(2x+3y\right)^2\ge0;-\left|y-2\right|\le0\) nên dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}y-2=0\\2x+3y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x=-3\end{cases}}\)

Thay vào M ta có \(M=\left(-3\right)^3+2.2+3.\left(-3\right)^2.2=31\)

NM
9 tháng 9 2021

Bài 1 

ta có a+3+b-3 =a +b chia hết cho 4

nên (b-a )(a+b) cũng chia hết cho 4

bài 2.

ta có: \(M=6x^2-5x-6-12xy+6y^2+6y-3x+2y+2027\)

\(=6\left(x-y\right)^2-8\left(x-y\right)+2021=24-16+2021=2029\)

24 tháng 9 2016

ta có 2x2+2y2=5xy

=>2(x+y)2=9xy và 2(x-y)2=xy

M2=\(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\)

vậy M=3 hoặc M=-3

25 tháng 9 2016

Ta dùng phương pháp tách đa thức thành nhân tử ta được

=> x+y=2x2+2y2=2(x2+y2)=9xy

=> x-y=2x2-2y2=2(x2-y2)=xy=1xy=xy

=>M=(x+y)2/(x-y)2=9xy:xy=9

Nên M= cộng trừ căn bậc 2 của 9

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại 

29 tháng 10 2019

\(a.=4a\left(a-2\right)\)

\(b.=x\left(x+2xy+y^2-z^2\right)\)

\(=x\left(\left(x+y\right)^2-z^2\right)\)

\(=x\left(x+y-z\right)\left(x+y+z\right)\)

29 tháng 10 2019

Gọi f( x ) = x- x- 11x + m

      g( x )  = x - 3

Cho g( x ) = 0

\(\Rightarrow\)x - 3 = 0

\(\Rightarrow\)x      = 3

\(\Rightarrow\)f( 3 ) = 33 - 3- 11.3 + m

\(\Rightarrow\)f( 3 ) = - 15 + m

Để f( x ) \(⋮\)g( x )

\(\Leftrightarrow\)- 15 + m = 0

\(\Rightarrow\)m              = - 15 

Vậy : m = - 15 thì M = x3 - x- 11x + m \(⋮\)x - 3

29 tháng 1 2019

để tìm số dư, rồi cho số dư đó bằng 0, từ đó tìm được giá trị của m.

Mở rộng: Bài toán này ta áp dụng phân tích đa thức thành nhân tử để giải toán

12 tháng 11 2021

\(\Leftrightarrow8x^3-2x^2-15x+m=\left(4x-3\right)\cdot a\left(x\right)\)

Thay \(x=\dfrac{3}{4}\Leftrightarrow8\cdot\left(\dfrac{3}{4}\right)^3-2\left(\dfrac{3}{4}\right)^2-15\cdot\dfrac{3}{4}+m=0\)

\(\Leftrightarrow8\cdot\dfrac{27}{64}-2\cdot\dfrac{9}{16}-\dfrac{45}{4}+m=0\\ \Leftrightarrow\dfrac{27}{8}-\dfrac{9}{8}-\dfrac{45}{4}+m=0\\ \Leftrightarrow\dfrac{9}{4}-\dfrac{45}{4}+m=0\\ \Leftrightarrow m-9=0\\ \Leftrightarrow m=9\)