Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{100}\left(1+2+3+....+100\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+.....+\frac{1}{100}.\frac{100\left(100+1\right)}{2}\)
\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{100+1}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{101}{2}\)
\(=\frac{2+3+4+....+101}{2}\)
\(=\frac{\frac{101\left(101+1\right)}{2}-1}{2}=5150.5\)
\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)
\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)
\(P=\frac{37}{60}\)
\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)
\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)
\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)
\(Q=\frac{1044}{4375}\)
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{100}\left(1+2+3+....+100\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{100}.\frac{100.101}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{101}{2}\)
\(=\frac{2+3+4+....+101}{2}\)
\(=\frac{\frac{101.102}{2}-1}{2}\)
\(=2575\)
Vậy \(S=2575\)
\(P=\left(\dfrac{-1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{6}:2\)
\(=\left(\dfrac{1}{2}+\dfrac{3}{5}\right):3+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=\dfrac{11}{10}\cdot\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{22}{60}+\dfrac{15}{60}=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-\dfrac{126}{125}\right)\cdot\dfrac{7}{4}:\left[\dfrac{-119}{36}\cdot\dfrac{36}{17}\right]\)
\(=\dfrac{-116}{125}\cdot\dfrac{7}{4}:\left(-7\right)\)
\(=\dfrac{116}{125}\cdot\dfrac{7}{4}\cdot\dfrac{1}{7}=\dfrac{29}{125}\)
1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)
2)\(A=\frac{x-7}{2}\)
Do 2>0 =>A>0 <=>x-7>0<=>x>7
Vậy x>7 thì A>0
3)\(A=\frac{x+3}{x-5}\)
Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0
<=>-3<x<5
Vậy -3<x<5 thì A<0
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)
\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
\(2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\)
\(A=2A-A=1-\left(\frac{1}{2}\right)^{100}\)