Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(\frac{53}{4}-\frac{59}{27}-\frac{65}{6}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{10}{7}+\frac{10}{3}\right):\left(\frac{37}{3}-\frac{100}{7}\right)}=\frac{\left(\frac{4293}{324}-\frac{708}{324}-\frac{3510}{324}\right).\frac{5751}{25}+\frac{187}{4}}{\left(\frac{30}{21}+\frac{70}{21}\right):\left(\frac{259}{21}-\frac{300}{21}\right)}=\frac{\frac{25}{108}.\frac{5751}{25}+\frac{187}{4}}{\frac{100}{21}:\left(-\frac{41}{21}\right)}\)=\(\frac{\frac{213}{4}+\frac{187}{4}}{-\frac{100}{41}}=100:\left(-\frac{100}{4}\right)=-4\)
\(30+\frac{14}{5}:\left(\frac{24}{150}-\frac{270}{150}-\frac{25}{150}\right)=30+\frac{14}{5}:\left(-\frac{271}{150}\right)=30+\left(-\frac{420}{271}\right)=\frac{7710}{271}\)
\(A=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)
\(=\frac{2^3\left(2^{27}.5^7+2^{10}.5^{27}\right)}{2^{27}.5^7+2^{10}.5^{27}}\)
\(=2^3=8\)
\(\dfrac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}=\dfrac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}= \dfrac{2^{13}.5^7}{2^{10}.5^7}=2^3=8\)
a) \(A=\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(2^2.5\right)^4}{5^{2^5}.\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{\left(5^{10}:5^8\right).\left(2^{10}:2^8\right)}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}\)
b) \(B=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)\(=\frac{2^3+2^3}{1}=\frac{8+8}{1}=16\)
c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\right)\)
\(\Rightarrow C=1-\frac{1}{2^{100}}\)
d) \(D=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{100}}\)
\(\Rightarrow5D=5+1+\frac{1}{5^2}+\frac{1}{5^3}+...........+\frac{1}{5^{101}}\)
\(\Rightarrow5D-D=\left(5+1+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{101}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..........+\frac{1}{5^{100}}\right)\)
\(\Rightarrow4D=5-\frac{1}{5^{101}}\)
\(\Rightarrow D=\frac{5-\frac{1}{5^{101}}}{4}\)
a) \(A=\frac{5^4x20^4}{25^5x4^5}=\frac{5^4x\left(2^2x5\right)^4}{\left(5^2\right)^5x\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2x2^2}=\frac{1}{25.4}=\frac{1}{100}\)
b) \(B=\frac{2^{30}x5^7+2^{13}x5^{27}}{2^{27}x5^7+2^{10}x5^{27}}=\frac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}=2^3=8\)
c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)
\(C=1-\frac{1}{2^{100}}\)
phần d bn lm tương tự như phần c nha!
a, \(\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}=\frac{2^{13}.\left(2^{17}.5^7+5^{27}\right)}{2^{10}.\left(2^{17}.5^7+5^{27}\right)}=\frac{2^{13}}{2^{10}}=2^3=8\).
b, \(\frac{81.2^2+3^4+20.9^2}{16.3^2+45+2^2.9}=\frac{3^4.2^2+3^4+20.3^4}{16.3^2+3^2.5+2^2.3^2}=\frac{3^4.\left(2^2+1+20\right)}{3^2.\left(16+5+2^2\right)}=\frac{3^4.25}{3^2.25}=\frac{3^4}{3^2}=3^2=9\)
a : 8
b : 9