K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

Ta có:  x 2  + xy + x = x(x + y + 1)

Thay x = 77, y = 22 vào biểu thức, ta được:

x(x + y + 1) = 77.(77 + 22 + 1) = 77.100 = 7700

NM
3 tháng 9 2021

a.\(x^2+xy+x=x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)

b.\(x\left(x-y\right)+y\left(y-x\right)=\left(x-y\right)^2=\left(53-3\right)^2=50^2=2500\)

3 tháng 9 2021

Đặt A = x2 + xy + x 

= x(x + y + 1) 

Thay x = 77 ; y = 22 vào biểu thức ta được 

A = 77(77 + 22 + 1) = 77.100 = 7700

b) Đặt B =  x(x - y) + y(y - x) 

= (x - y)2 

Thay x = 53 ; y = 3 vào biểu thức ta được 

B = (53  - 3)2 = 502 = 2500

23 tháng 8 2017

Ta có: x = 77 và y = 22

Thay vào: 772 + 77.22 + 77 

= 77.77 + 77.22 + 77.1

= 77.(77+22+1)

= 77. 100

=7700

23 tháng 8 2017

Ta có:    x2 + xy + x = x( x+y+1) 

Thay x= 77; y= 22 vào x(x+y+1) , có:

77. ( 77+22+1) = 77. 100 = 7700

28 tháng 7 2016

A= x+ xy + x
=> A= x(x +y +1)
thay x=22 và y=77 ta đc: A= 22 (22 + 77 +1)= 22.100=2200

28 tháng 7 2016

\(A=x^2+xy+x=x\left(1+x+y\right)\)

Thay \(x=22;y=77\)

\(A=x\left(1+x+y\right)=22\left(1+22+77\right)=22.100=2200\)

Vậy giá trị của biểu thức \(x^2+xy+y=2200\)tại x = 22 và y = 77

18 tháng 7 2018

a ) 

Ta có : 

\(x^2+xy+x=x\left(x+y+1\right)\)

Thay \(x=77;y=22\)vào b/t , ta được : 

\(77\left(77+22+1\right)=77.100=7700\)

Vậy \(x^2+xy+x=7700\)tại \(x=77;y=22\)

b ) 

Ta có : 

\(x\left(x-y\right)+y\left(y-x\right)\)

\(=x\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\)

Thay \(x=53;y=3\)vào b/t , ta được : 

\(\left(53-3\right)^2=50^2=2500\)

Vậy \(x\left(x-y\right)+y\left(y-x\right)=2500\) tại \(x=53;y=3\)

29 tháng 5 2017

a) \(x^2+xy+x\)

\(\Leftrightarrow x\left(x+y+1\right)\)

Tại x=77 và y=22 có:

\(\Leftrightarrow77\left(77+22+1\right)\)

\(=7700\)

b) \(x\left(x-y\right)+y\left(y-x\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow x^2-y^2\)

Tại x=53 và y=3, ta có:

\(53^2-3^2=2800\)

28 tháng 7 2017

\(a,x^2+xy+x=77^2+77\times22+77=5929+1694+77=7700\)

\(b,\cdot x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)

    \(\cdot53^2-3^2=2809-9=2800\)

NV
22 tháng 7 2021

a.

\(x^2+xy+x=x\left(x+y+1\right)\)

Tại \(x=77;y=22\Rightarrow x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)

b.

\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)

\(=\left(53-3\right)^2=50^2=2500\)

c.

\(x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x+y\right)\left(x-1\right)\)

\(=\left(2001+1999\right)\left(2001-1\right)=4000.2000=8000000\)