Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
a: ĐK của A là x<>-3; x<>2
ĐKXĐ của B là x<>3
DKXĐ của C là x<>0; x<>4/3
ĐKXĐ của D là x<>-2
ĐKXĐ của E là x<>2; x<>-2
ĐKXĐ của F là x<>2
b,c:
\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
Để A=0 thì 2=0(loại)
\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)
Để B=0 thì x+3=0
=>x=-3
\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
Để C=0 thì 3x+4=0
=>x=-4/3
\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
Để D=0 thì x+2=0
=>x=-2(loại)
\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)
Để E=0 thì x=0
\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
Để F=0 thì 3=0(loại)
Í tui nói là 2x-1:3 í nhưng mà k viết đc dạng phân số, chia 3 là cái gạch giữa 2x-1 và 3
\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)
\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)
\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)
\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)
\(=\left(-1\right)^{2018}+2018=2019\)
Nhân 2 vế của 2 ĐT đề bài ta có
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)
<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)
=>\(P=\frac{17}{10}\)
Vậy \(P=\frac{17}{10}\)
a) ĐK \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne0\end{matrix}\right.\)
b) \(A=\left(\dfrac{x}{x-3}-\dfrac{x}{x+3}\right).\dfrac{x^2+6x+9}{6x}\)
\(A=\dfrac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}\)
\(A=\dfrac{6x}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}=\dfrac{x-3}{x+3}\)
c) \(A=\dfrac{x-3}{x+3}=\dfrac{x+3-6}{x+3}=1-\dfrac{6}{x+3}\)
Để A nguyên khi \(6⋮\left(x+3\right)\Rightarrow\left(x+3\right)\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Để A là nguyên dương thì \(\dfrac{6}{x+3}< 1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=-2\\x+3=-3\\x+3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\\x=-6\\x=-9\end{matrix}\right.\)
\(D=\left(\sqrt{2}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{2}-1\right)\\ D=\left(\sqrt{10}-\sqrt{5}+\sqrt{2}-1\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{2}-1\right)\\ D=\left(\sqrt{10}-1\right)^2-\left(\sqrt{5}-\sqrt{2}\right)^2\\ D=10-2\sqrt{10}+1-5+2\sqrt{10}-2\\ D=4\)
Bạn ghi lại đề ở phần trả lời giúp mình nhé. Ko nhìn thấy đề!
Lỗi LATEX rồi bạn, viết lại đi