Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{z+y}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=1\\ \)
Nhân phân phối ra
\(\left(\frac{x^2}{z+y}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y\right).\frac{z}{x+y}+\left(x+z\right).\frac{y}{x+z}+\left(z+y\right).\frac{x}{z+y}=1\)
\(\left(\frac{x^2}{z+y}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=0\)
Chờ các bạn lâu quá nên mình giải luôn: (x+y+z)\(\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)) = \(\frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{yz}{x+y}+\frac{xz}{y+z}+\frac{yz}{x+z}+\frac{z^2}{x+y}=1\)
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)
Do đó: \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)
bài 1 ta có x+y+z=0 suy ra y+z=-x
(-x)2=x2=(y+z)2=y2+2yz+z2
suy ra
\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)
tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)
bài 2 bạn ghi đề không rõ ràng nên mình không giải
Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)
Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !
Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath
Bài 3:
Ta có:
\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Do đó:
\(A=3^4-1=80\)