Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Tại $x=\frac{1}{2}=0,5$ thì $A=\frac{2014-0,5}{2015-0,5}=\frac{4027}{4029}$
Tại $x=\frac{-1}{2}=-0,5$ thì $A=\frac{2014+0,5}{2015+0,5}=\frac{4029}{4031}$
b. $A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}=1+\frac{1}{x-2015}$
Để $A$ max thì $\frac{1}{x-2015}$ max
$\Rightarrow x-2015 là số nguyên dương nhỏ nhất
$\Rightarrow x-2015=1$
$\Rightarrow x=2016$
a) Ta có 2011 = x => 2012 = x + 1
Thay x + 1 = 2012 vào biểu thức ta dc:
x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012
= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1
Vậy giá trị của biểu thức là -1 khi x = 2011
b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46
Vậy ...
Hướng dẫn giải:
Thay x = 0,5 và y = -1 vào biểu thức ta có:
16x2y5 – 2x3y2 = 16 (1212)2 (-1)5 – 2 (1212)3 (-1)2
= 16. 1414 .(-1) – 2 . 1818 . 1 = -4 - 1414 = - 174174
Vậy giá trị của biểu thức 16x2y5 – 2x3y2 tại x = 0,5 và y = -1 là - 174174
Cái này bạn phải tự biết làm chứ ! Quá dễ mà..
Nếu chưa hiểu thì bạn cũng có thể hỏi lại thầy @phynit
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)